NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction are part of NCERT Solutions for Class 11 Maths. Here we have given NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction.
Board | CBSE |
Textbook | NCERT |
Class | Class 11 |
Subject | Maths |
Chapter | Chapter 4 |
Chapter Name | Principle of Mathematical Induction |
Exercise | Ex 4.1 |
Number of Questions Solved | 24 |
Category | NCERT Solutions |
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction
NCERT Exercises
Chapter 4 Principle of Mathematical Induction Exercise – 4.1
Prove the following by using the principle of mathematical induction for aline n ∈ N :
Ex 4.1 Class 11 Maths Question 1.
\(1+{ 3 }^{ 2 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ 3 }^{ n }=\frac { \left( { 3 }^{ n }-1 \right) }{ 2 } \)
Solution.
Let the given statement be P(n) i.e.,
P(n) : \(1+{ 3 }^{ 2 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ 3 }^{ n }=\frac { \left( { 3 }^{ n }-1 \right) }{ 2 } \)
Ex 4.1 Class 11 Maths Question 2.
\({ 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n }^{ 3 }={ \left( \frac { n\left( n+1 \right) }{ 2 } \right) }^{ 2 }\)
Solution.
Let the given statement be P(n) i.e.,
P(n) : \({ 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n }^{ 3 }={ \left( \frac { n\left( n+1 \right) }{ 2 } \right) }^{ 2 }\)
Ex 4.1 Class 11 Maths Question 3.
\(1+\frac { 1 }{ \left( 1+2 \right) } +\frac { 1 }{ \left( 1+2+3 \right) } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n \right) } =\frac { 2 }{ \left( n+1 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1+\frac { 1 }{ \left( 1+2 \right) } +\frac { 1 }{ \left( 1+2+3 \right) } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 1+2+3+.\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n \right) } =\frac { 2 }{ \left( n+1 \right) } \)
Ex 4.1 Class 11 Maths Question 4.
\(1.2.3+2.3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n\left( n+1 \right) \left( n+2 \right) =\frac { n\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) }{ 4 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.2.3+2.3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n\left( n+1 \right) \left( n+2 \right) =\frac { n\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) }{ 4 } \)
Ex 4.1 Class 11 Maths Question 5.
\(1.3+{ 2.3 }^{ 2 }+{ 3.3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n.3 }^{ n }=\frac { \left( 2n-1 \right) { 3 }^{ n+1 }+3 }{ 4 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.3+{ 2.3 }^{ 2 }+{ 3.3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n.3 }^{ n }=\frac { \left( 2n-1 \right) { 3 }^{ n+1 }+3 }{ 4 } \)
Ex 4.1 Class 11 Maths Question 6.
\(1.2+2.3+3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.\left( n+1 \right) =\left[ \frac { n\left( n+1 \right) \left( n+2 \right) }{ 3 } \right] \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.2+2.3+3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.\left( n+1 \right) =\left[ \frac { n\left( n+1 \right) \left( n+2 \right) }{ 3 } \right] \)
Ex 4.1 Class 11 Maths Question 7.
\(1.3+3.5+5.7+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\left( 2n-1 \right) \left( 2n+1 \right) =\frac { n\left( { 4n }^{ 2 }+6n-1 \right) }{ 3 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.3+3.5+5.7+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\left( 2n-1 \right) \left( 2n+1 \right) =\frac { n\left( { 4n }^{ 2 }+6n-1 \right) }{ 3 } \)
Ex 4.1 Class 11 Maths Question 8.
\(1.2+2.{ 2 }^{ 2 }+3.{ 2 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.{ 2 }^{ n }=\left( n-1 \right) { 2 }^{ n+1 }+2\)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.2+2.{ 2 }^{ 2 }+3.{ 2 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.{ 2 }^{ n }=\left( n-1 \right) { 2 }^{ n+1 }+2\)
Ex 4.1 Class 11 Maths Question 9
\(\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ { 2 }^{ n } } =1-\frac { 1 }{ { 2 }^{ n } } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ { 2 }^{ n } } =1-\frac { 1 }{ { 2 }^{ n } } \)
Ex 4.1 Class 11 Maths Question 10.
\(\frac { 1 }{ 2.5 } +\frac { 1 }{ 5.8 } +\frac { 1 }{ 8.11 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-1 \right) \left( 3n+2 \right) } =\frac { n }{ \left( 6n+4 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 2.5 } +\frac { 1 }{ 5.8 } +\frac { 1 }{ 8.11 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-1 \right) \left( 3n+2 \right) } =\frac { n }{ \left( 6n+4 \right) } \)
Ex 4.1 Class 11 Maths Question 11.
\(\frac { 1 }{ 1.2.3 } +\frac { 1 }{ 2.3.4 } +\frac { 1 }{ 3.4.5 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ n\left( n+1 \right) \left( n+2 \right) } =\frac { n\left( n+3 \right) }{ 4\left( n+1 \right) \left( n+2 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 1.2.3 } +\frac { 1 }{ 2.3.4 } +\frac { 1 }{ 3.4.5 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ n\left( n+1 \right) \left( n+2 \right) } =\frac { n\left( n+3 \right) }{ 4\left( n+1 \right) \left( n+2 \right) } \)
Ex 4.1 Class 11 Maths Question 12.
\(a+ar+{ ar }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ ar }^{ n-1 }=\frac { a\left( { r }^{ n }-1 \right) }{ r-1 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(a+ar+{ ar }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ ar }^{ n-1 }=\frac { a\left( { r }^{ n }-1 \right) }{ r-1 } \)
Ex 4.1 Class 11 Maths Question 13.
\(\left( 1+\frac { 3 }{ 1 } \right) \left( 1+\frac { 5 }{ 4 } \right) \left( 1+\frac { 7 }{ 9 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { \left( 2n+1 \right) }{ { n }^{ 2 } } \right) ={ \left( n+1 \right) }^{ 2 }\)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\left( 1+\frac { 3 }{ 1 } \right) \left( 1+\frac { 5 }{ 4 } \right) \left( 1+\frac { 7 }{ 9 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { \left( 2n+1 \right) }{ { n }^{ 2 } } \right) ={ \left( n+1 \right) }^{ 2 }\)
Ex 4.1 Class 11 Maths Question 14.
\(\left( 1+\frac { 1 }{ 1 } \right) \left( 1+\frac { 1 }{ 2 } \right) \left( 1+\frac { 1 }{ 3 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { 1 }{ n } \right) =\left( n+1 \right) \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\left( 1+\frac { 1 }{ 1 } \right) \left( 1+\frac { 1 }{ 2 } \right) \left( 1+\frac { 1 }{ 3 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { 1 }{ n } \right) =\left( n+1 \right) \)
Ex 4.1 Class 11 Maths Question 15.
\({ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ \left( 2n-1 \right) }^{ 2 }=\frac { n\left( 2n-1 \right) \left( 2n+1 \right) }{ 3 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \({ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ \left( 2n-1 \right) }^{ 2 }=\frac { n\left( 2n-1 \right) \left( 2n+1 \right) }{ 3 } \)
Ex 4.1 Class 11 Maths Question 16.
\(\frac { 1 }{ 1.4 } +\frac { 1 }{ 4.7 } +\frac { 1 }{ 7.10 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-2 \right) \left( 3n+1 \right) } =\frac { n }{ \left( 3n+1 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 1.4 } +\frac { 1 }{ 4.7 } +\frac { 1 }{ 7.10 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-2 \right) \left( 3n+1 \right) } =\frac { n }{ \left( 3n+1 \right) } \)
Ex 4.1 Class 11 Maths Question 17.
\(\frac { 1 }{ 3.5 } +\frac { 1 }{ 5.7 } +\frac { 1 }{ 7.9 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 2n+1 \right) \left( 2n+3 \right) } =\frac { n }{ 3\left( 2n+3 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 3.5 } +\frac { 1 }{ 5.7 } +\frac { 1 }{ 7.9 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 2n+1 \right) \left( 2n+3 \right) } =\frac { n }{ 3\left( 2n+3 \right) } \)
Ex 4.1 Class 11 Maths Question 18.
\(1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n<\frac { 1 }{ 8 } { \left( 2n+1 \right) }^{ 2 }\)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n<\frac { 1 }{ 8 } { \left( 2n+1 \right) }^{ 2 }\)
Ex 4.1 Class 11 Maths Question 19.
n(n+1 )(n + 5) is a multiple of 3.
Solution.
Let the given statement be P(n), i.e.,
P(n): n(n + l)(n + 5) is a multiple of 3.
Ex 4.1 Class 11 Maths Question 20.
\({ 10 }^{ 2n-1 }+1\) is divisible by 11.
Solution.
Let the given statement be P(n), i.e.,
P(n): \({ 10 }^{ 2n-1 }+1\) is divisible by 11
Ex 4.1 Class 11 Maths Question 21.
\({ x }^{ 2n }-{ y }^{ 2n }\) is divisible by x + y.
Solution.
Let the given statement be P(n), i.e.,
P(n): \({ x }^{ 2n }-{ y }^{ 2n }\) is divisible by x + y.
Ex 4.1 Class 11 Maths Question 22.
\({ 3 }^{ 2n+2 }-8n-9\) is divisible by 8.
Solution.
Let the given statement be P(n), i.e.,
P(n): \({ 3 }^{ 2n+2 }-8n-9\) is divisible by 8.
Ex 4.1 Class 11 Maths Question 23.
\({ 41 }^{ n }-{ 14 }^{ n }\) is a multiple of 27.
Solution.
Let the given statement be P(n), i.e.,
P(n): \({ 41 }^{ n }-{ 14 }^{ n }\) is a multiple of 27.
Ex 4.1 Class 11 Maths Question 24.
\(\left( 2n+7 \right) <{ \left( n+3 \right) }^{ 2 }\)
Solution.
Let the given statement be P(n), i.e.,
P(n): \(\left( 2n+7 \right) <{ \left( n+3 \right) }^{ 2 }\)
First we prove that the statement is true for n = 1.
We hope the NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction help you. If you have any query regarding NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction, drop a comment below and we will get back to you at the earliest.