• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Solutions for Class 12 English Flamingo and Vistas
    • NCERT Solutions for Class 11 English
    • NCERT Solutions for Class 11 Hindi
    • NCERT Solutions for Class 12 Hindi
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction are part of NCERT Solutions for Class 11 Maths. Here we have given NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction.

Board CBSE
Textbook NCERT
Class Class 11
Subject Maths
Chapter Chapter 4
Chapter Name Principle of Mathematical Induction
Exercise Ex 4.1
Number of Questions Solved 24
Category NCERT Solutions

NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction

NCERT Exercises

Chapter  4 Principle of Mathematical Induction Exercise – 4.1

Prove the following by using the principle of mathematical induction for aline n ∈ N :
Ex 4.1 Class 11 Maths Question 1.
\(1+{ 3 }^{ 2 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ 3 }^{ n }=\frac { \left( { 3 }^{ n }-1 \right) }{ 2 } \)
Solution.
Let the given statement be P(n) i.e.,
P(n) : \(1+{ 3 }^{ 2 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ 3 }^{ n }=\frac { \left( { 3 }^{ n }-1 \right) }{ 2 } \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 1NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 2

Ex 4.1 Class 11 Maths Question 2.
\({ 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n }^{ 3 }={ \left( \frac { n\left( n+1 \right) }{ 2 } \right) }^{ 2 }\)
Solution.
Let the given statement be P(n) i.e.,
P(n) : \({ 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n }^{ 3 }={ \left( \frac { n\left( n+1 \right) }{ 2 } \right) }^{ 2 }\)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 3 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 4

Ex 4.1 Class 11 Maths Question 3.
\(1+\frac { 1 }{ \left( 1+2 \right) } +\frac { 1 }{ \left( 1+2+3 \right) } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n \right) } =\frac { 2 }{ \left( n+1 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1+\frac { 1 }{ \left( 1+2 \right) } +\frac { 1 }{ \left( 1+2+3 \right) } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 1+2+3+.\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n \right) } =\frac { 2 }{ \left( n+1 \right) } \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 5 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 6

Ex 4.1 Class 11 Maths Question 4.
\(1.2.3+2.3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n\left( n+1 \right) \left( n+2 \right) =\frac { n\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) }{ 4 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.2.3+2.3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n\left( n+1 \right) \left( n+2 \right) =\frac { n\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) }{ 4 } \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 7 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 8

Ex 4.1 Class 11 Maths Question 5.
\(1.3+{ 2.3 }^{ 2 }+{ 3.3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n.3 }^{ n }=\frac { \left( 2n-1 \right) { 3 }^{ n+1 }+3 }{ 4 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.3+{ 2.3 }^{ 2 }+{ 3.3 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ n.3 }^{ n }=\frac { \left( 2n-1 \right) { 3 }^{ n+1 }+3 }{ 4 } \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 9 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 10

Ex 4.1 Class 11 Maths Question 6.
\(1.2+2.3+3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.\left( n+1 \right) =\left[ \frac { n\left( n+1 \right) \left( n+2 \right) }{ 3 } \right] \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.2+2.3+3.4+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.\left( n+1 \right) =\left[ \frac { n\left( n+1 \right) \left( n+2 \right) }{ 3 } \right] \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 11 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 12

Ex 4.1 Class 11 Maths Question 7.
\(1.3+3.5+5.7+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\left( 2n-1 \right) \left( 2n+1 \right) =\frac { n\left( { 4n }^{ 2 }+6n-1 \right) }{ 3 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.3+3.5+5.7+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\left( 2n-1 \right) \left( 2n+1 \right) =\frac { n\left( { 4n }^{ 2 }+6n-1 \right) }{ 3 } \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 13 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 14 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 15

Ex 4.1 Class 11 Maths Question 8.
\(1.2+2.{ 2 }^{ 2 }+3.{ 2 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.{ 2 }^{ n }=\left( n-1 \right) { 2 }^{ n+1 }+2\)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1.2+2.{ 2 }^{ 2 }+3.{ 2 }^{ 3 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n.{ 2 }^{ n }=\left( n-1 \right) { 2 }^{ n+1 }+2\)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 16

Ex 4.1 Class 11 Maths Question 9
\(\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ { 2 }^{ n } } =1-\frac { 1 }{ { 2 }^{ n } } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ { 2 }^{ n } } =1-\frac { 1 }{ { 2 }^{ n } } \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 17 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 18

Ex 4.1 Class 11 Maths Question 10.
\(\frac { 1 }{ 2.5 } +\frac { 1 }{ 5.8 } +\frac { 1 }{ 8.11 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-1 \right) \left( 3n+2 \right) } =\frac { n }{ \left( 6n+4 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 2.5 } +\frac { 1 }{ 5.8 } +\frac { 1 }{ 8.11 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-1 \right) \left( 3n+2 \right) } =\frac { n }{ \left( 6n+4 \right) } \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 19 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 20

Ex 4.1 Class 11 Maths Question 11.
\(\frac { 1 }{ 1.2.3 } +\frac { 1 }{ 2.3.4 } +\frac { 1 }{ 3.4.5 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ n\left( n+1 \right) \left( n+2 \right) } =\frac { n\left( n+3 \right) }{ 4\left( n+1 \right) \left( n+2 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 1.2.3 } +\frac { 1 }{ 2.3.4 } +\frac { 1 }{ 3.4.5 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ n\left( n+1 \right) \left( n+2 \right) } =\frac { n\left( n+3 \right) }{ 4\left( n+1 \right) \left( n+2 \right) } \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 21 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 22 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 23

Ex 4.1 Class 11 Maths Question 12.
\(a+ar+{ ar }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ ar }^{ n-1 }=\frac { a\left( { r }^{ n }-1 \right) }{ r-1 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(a+ar+{ ar }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ ar }^{ n-1 }=\frac { a\left( { r }^{ n }-1 \right) }{ r-1 } \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 24 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 25

Ex 4.1 Class 11 Maths Question 13.
\(\left( 1+\frac { 3 }{ 1 } \right) \left( 1+\frac { 5 }{ 4 } \right) \left( 1+\frac { 7 }{ 9 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { \left( 2n+1 \right) }{ { n }^{ 2 } } \right) ={ \left( n+1 \right) }^{ 2 }\)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\left( 1+\frac { 3 }{ 1 } \right) \left( 1+\frac { 5 }{ 4 } \right) \left( 1+\frac { 7 }{ 9 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { \left( 2n+1 \right) }{ { n }^{ 2 } } \right) ={ \left( n+1 \right) }^{ 2 }\)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 26 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 27

Ex 4.1 Class 11 Maths Question 14.
\(\left( 1+\frac { 1 }{ 1 } \right) \left( 1+\frac { 1 }{ 2 } \right) \left( 1+\frac { 1 }{ 3 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { 1 }{ n } \right) =\left( n+1 \right) \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\left( 1+\frac { 1 }{ 1 } \right) \left( 1+\frac { 1 }{ 2 } \right) \left( 1+\frac { 1 }{ 3 } \right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1+\frac { 1 }{ n } \right) =\left( n+1 \right) \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 28 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 29

Ex 4.1 Class 11 Maths Question 15.
\({ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ \left( 2n-1 \right) }^{ 2 }=\frac { n\left( 2n-1 \right) \left( 2n+1 \right) }{ 3 } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \({ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +{ \left( 2n-1 \right) }^{ 2 }=\frac { n\left( 2n-1 \right) \left( 2n+1 \right) }{ 3 } \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 30 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 31

Ex 4.1 Class 11 Maths Question 16.
\(\frac { 1 }{ 1.4 } +\frac { 1 }{ 4.7 } +\frac { 1 }{ 7.10 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-2 \right) \left( 3n+1 \right) } =\frac { n }{ \left( 3n+1 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 1.4 } +\frac { 1 }{ 4.7 } +\frac { 1 }{ 7.10 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 3n-2 \right) \left( 3n+1 \right) } =\frac { n }{ \left( 3n+1 \right) } \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 32NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 33

Ex 4.1 Class 11 Maths Question 17.
\(\frac { 1 }{ 3.5 } +\frac { 1 }{ 5.7 } +\frac { 1 }{ 7.9 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 2n+1 \right) \left( 2n+3 \right) } =\frac { n }{ 3\left( 2n+3 \right) } \)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(\frac { 1 }{ 3.5 } +\frac { 1 }{ 5.7 } +\frac { 1 }{ 7.9 } +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +\frac { 1 }{ \left( 2n+1 \right) \left( 2n+3 \right) } =\frac { n }{ 3\left( 2n+3 \right) } \)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 34 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 35

Ex 4.1 Class 11 Maths Question 18.
\(1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n<\frac { 1 }{ 8 } { \left( 2n+1 \right) }^{ 2 }\)
Solution.
Let the given statement be P(n), i.e.,
P(n) : \(1+2+3+\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +n<\frac { 1 }{ 8 } { \left( 2n+1 \right) }^{ 2 }\)
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 36 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 37

Ex 4.1 Class 11 Maths Question 19.
n(n+1 )(n + 5) is a multiple of 3.
Solution.
Let the given statement be P(n), i.e.,
P(n): n(n + l)(n + 5) is a multiple of 3.
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 38 NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 39

Ex 4.1 Class 11 Maths Question 20.
\({ 10 }^{ 2n-1 }+1\) is divisible by 11.
Solution.
Let the given statement be P(n), i.e.,
P(n): \({ 10 }^{ 2n-1 }+1\) is divisible by 11
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 40

Ex 4.1 Class 11 Maths Question 21.
\({ x }^{ 2n }-{ y }^{ 2n }\) is divisible by x + y.
Solution.
Let the given statement be P(n), i.e.,
P(n): \({ x }^{ 2n }-{ y }^{ 2n }\) is divisible by x + y.
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 41

Ex 4.1 Class 11 Maths Question 22.
\({ 3 }^{ 2n+2 }-8n-9\) is divisible by 8.
Solution.
Let the given statement be P(n), i.e.,
P(n): \({ 3 }^{ 2n+2 }-8n-9\) is divisible by 8.
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 42

Ex 4.1 Class 11 Maths Question 23.
\({ 41 }^{ n }-{ 14 }^{ n }\) is a multiple of 27.
Solution.
Let the given statement be P(n), i.e.,
P(n): \({ 41 }^{ n }-{ 14 }^{ n }\) is a multiple of 27.
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 43

Ex 4.1 Class 11 Maths Question 24.
\(\left( 2n+7 \right) <{ \left( n+3 \right) }^{ 2 }\)
Solution.
Let the given statement be P(n), i.e.,
P(n): \(\left( 2n+7 \right) <{ \left( n+3 \right) }^{ 2 }\)
First we prove that the statement is true for n = 1.
NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction 44

We hope the NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction help you. If you have any query regarding NCERT Solutions for Class 11 Maths Chapter 4 Principle of Mathematical Induction, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers
  • The Summer Of The Beautiful White Horse Answers
  • Job Application Letter class 12 Samples
  • Science Lab Manual Class 9
  • Letter to The Editor Class 12 Samples
  • Unseen Passage For Class 6 Answers
  • NCERT Solutions for Class 12 Hindi Core
  • Invitation and Replies Class 12 Examples
  • Advertisement Writing Class 11 Examples
  • Lab Manual Class 10 Science

Recent Posts

  • Pressure of a Liquid : Definition, Units and Solved Examples
  • Specific Gravity : Definition, Equation and Solved Examples
  • Omission Exercises for Class 9 CBSE with Answers
  • Stress-Strain Graph : Load-Extension Graph of a String
  • Force Constant of Spring : Series and Parallel Combination
  • Work Done in Stretching a Wire : Energy Density
  • Poisson’s Ratio : Longitudinal and Lateral Strain
  • Mother’s Day Class 11 Questions And Answers NCERT
  • Albert Einstein At School Class 11 Questions And Answers NCERT
  • Elastic Moduli: Young’s Modulus, Shear Modulus, Formula and Units
  • Ranga’s Marriage Class 11 Questions And Answers NCERT
  • The Address Class 11 Questions And Answers NCERT
  • The Summer Of The Beautiful White Horse Class 11 Questions And Answers NCERT
  • Elastic Property of Matter : Some Useful Definitions
  • What is Weightlessness in Artificial Satellite With Example?

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions