• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1

NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 are part of NCERT Solutions for Class 12 Maths. Here we have given NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1.

  • Continuity and Differentiability Class 12 Ex 5.2
  • Continuity and Differentiability Class 12 Ex 5.3
  • Continuity and Differentiability Class 12 Ex 5.4
  • Continuity and Differentiability Class 12 Ex 5.5
  • Continuity and Differentiability Class 12 Ex 5.6
  • Continuity and Differentiability Class 12 Ex 5.7
  • Continuity and Differentiability Class 12 Ex 5.8
Board CBSE
Textbook NCERT
Class Class 12
Subject Maths
Chapter Chapter 5
Chapter Name Continuity and Differentiability
Exercise Ex 5.1
Number of Questions Solved 34
Category NCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Exc  5.1

Ex 5.1 Class 12 Maths Question 1.
Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Solution:
(i) At x = 0. limx–>0 f (x) = limx–>0 (5x – 3) = – 3 and
f(0) = – 3
∴f is continuous at x = 0
(ii) At x = – 3, limx–>3 f(x)= limx–>-3 (5x – 3) = – 18
and f( – 3) = – 18
∴ f is continuous at x = – 3
(iii) At x = 5, limx–>5 f(x) = limx–>5 (5x – 3) = 22 and
f(5) = 22
∴ f is continuous at x = 5

Ex 5.1 Class 12 Maths Question 2.
Examine the continuity of the function f(x) = 2x² – 1 at x = 3.
Solution:
limx–>3 f(x) = limx–>3 (2x² – 1) = 17 and f(3)= 17
∴ f is continuous at x = 3

Ex 5.1 Class 12 Maths Question 3.
Examine the following functions for continuity.
(a) f(x) = x – 5
(b) f(x) = \(\\ \frac { 1 }{ x-5 } \), x≠5
(c) f(x) = \(\frac { { x }^{ 2 }-25 }{ x+5 } \),x≠5
(d) f(x) = |x – 5|
Solution:
(a) f(x) = (x-5) => (x-5) is a polynomial
∴it is continuous at each x ∈ R.
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q3.1

Ex 5.1 Class 12 Maths Question 4.
Prove that the function f (x) = xn is continuous at x = n, where n is a positive integer.
Solution:
f (x) = xn is a polynomial which is continuous for all x ∈ R.
Hence f is continuous at x = n, n ∈ N.

Ex 5.1 Class 12 Maths Question 5.
Is the function f defined by \(f(x)=\begin{cases} x,ifx\le 1 \\ 5,ifx>1 \end{cases}\) continuous at x = 0? At x = 1? At x = 2?
Solution:
(i) At x = 0
limx–>0- f(x) = limx–>0- x = 0 and
limx–>0+ f(x) = limx–>0+ x = 0 => f(0) = 0
∴ f is continuous at x = 0
(ii) At x = 1
limx–>1- f(x) = limx–>1- (x) = 1 and
limx–>1+ f(x) = limx–>1+(x) = 5
∴ limx–>1- f(x) ≠ limx–>1+ f(x)
∴ f is discontinuous at x = 1
(iii) At x = 2
limx–>2 f(x) = 5, f(2) = 5
∴ f is continuous at x = 2

Find all points of discontinuity off, where f is defined by

Ex 5.1 Class 12 Maths Question 6.
\(f(x)=\begin{cases} 2x+3,if\quad x\le 2 \\ 2x-3,if\quad x>2 \end{cases}\)
Solution:
\(f(x)=\begin{cases} 2x+3,if\quad x\le 2 \\ 2x-3,if\quad x>2 \end{cases}\) at x≠2
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q6.1

Ex 5.1 Class 12 Maths Question 7.
\(f(x)=\begin{cases} |x|+3,if\quad x\le -3 \\ -2x,if\quad -3<x<3 \\ 6x+2,if\quad x\ge 3 \end{cases}\)
Solution:
\(f(x)=\begin{cases} |x|+3,if\quad x\le -3 \\ -2x,if\quad -3<x<3 \\ 6x+2,if\quad x\ge 3 \end{cases}\)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q7.1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q7.2

Ex 5.1 Class 12 Maths Question 8.
Test the continuity of the function f (x) at x = 0
\(f(x)=\begin{cases} \frac { |x| }{ x } ;x\neq 0 \\ 0;x=0 \end{cases}\)
Solution:
We have;
(LHL at x=0)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q8.1

Ex 5.1 Class 12 Maths Question 9.
\(f(x)=\begin{cases} \frac { x }{ |x| } ;if\quad x<0 \\ -1,if\quad x\ge 0 \end{cases}\)
Solution:
\(f(x)=\begin{cases} \frac { x }{ |x| } ;if\quad x<0 \\ -1,if\quad x\ge 0 \end{cases}\)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q9.1

Ex 5.1 Class 12 Maths Question 10.
\(f(x)=\begin{cases} x+1,if\quad x\ge 1 \\ { x }^{ 2 }+1,if\quad x<1 \end{cases}\)
Solution:
\(f(x)=\begin{cases} x+1,if\quad x\ge 1 \\ { x }^{ 2 }+1,if\quad x<1 \end{cases}\)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q10.1

Ex 5.1 Class 12 Maths Question 11.
\(f(x)=\begin{cases} { x }^{ 3 }-3,if\quad x\le 2 \\ { x }^{ 2 }+1,if\quad x>2 \end{cases} \)
Solution:
\(f(x)=\begin{cases} { x }^{ 3 }-3,if\quad x\le 2 \\ { x }^{ 2 }+1,if\quad x>2 \end{cases} \)
At x = 2, L.H.L. limx–>2- (x³ – 3) = 8 – 3 = 5
R.H.L. = limx–>2+ (x² + 1) = 4 + 1 = 5
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q11.1

Ex 5.1 Class 12 Maths Question 12.
\(f(x)=\begin{cases} { x }^{ 10 }-1,if\quad x\le 1 \\ { x }^{ 2 },if\quad x>1 \end{cases} \)
Solution:
\(f(x)=\begin{cases} { x }^{ 10 }-1,if\quad x\le 1 \\ { x }^{ 2 },if\quad x>1 \end{cases} \)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q12.1

Ex 5.1 Class 12 Maths Question 13.
Is the function defined by \(f(x)=\begin{cases} x+5,if\quad x\le 1 \\ x-5,if\quad x>1 \end{cases} \) a continuous function?
Solution:
At x = 1,L.H.L.= limx–>1- f(x) = limx–>1- (x + 5) = 6,
R.HL. = limx–>1+ f(x) = limx–>1+ (x – 5) = – 4
f(1) = 1 + 5 = 6,
f(1) = L.H.L. ≠ R.H.L.
=> f is not continuous at x = 1
At x = c < 1, limx–>c (x + 5) = c + 5 = f(c)
At x = c > 1, limx–>c (x – 5) = c – 5 = f(c)
∴ f is continuous at all points x ∈ R except x = 1.

Discuss the continuity of the function f, where f is defined by

Ex 5.1 Class 12 Maths Question 14.
\(f(x)=\begin{cases} 3,if\quad 0\le x\le 1 \\ 4,if\quad 1<x<3 \\ 5,if\quad 3\le x\le 10 \end{cases}\)
Solution:
\(f(x)=\begin{cases} 3,if\quad 0\le x\le 1 \\ 4,if\quad 1<x<3 \\ 5,if\quad 3\le x\le 10 \end{cases}\)
In the interval 0 ≤ x ≤ 1,f(x) = 3; f is continuous in this interval.
At x = 1,L.H.L. = lim f(x) = 3,
R.H.L. = limx–>1+ f(x) = 4 => f is discontinuous at
x = 1
At x = 3, L.H.L. = limx–>3- f(x)=4,
R.H.L. = limx–>3+ f(x) = 5 => f is discontinuous at
x = 3
=> f is not continuous at x = 1 and x = 3.

Ex 5.1 Class 12 Maths Question 15.
\(f(x)=\begin{cases} 2x,if\quad x<0 \\ 0,if\quad 0\le x\le 1 \\ 4x,if\quad x>1 \end{cases}\)
Solution:
\(f(x)=\begin{cases} 2x,if\quad x<0 \\ 0,if\quad 0\le x\le 1 \\ 4x,if\quad x>1 \end{cases}\)
At x = 0, L.H.L. = limx–>0- 2x = 0 ,
R.H.L. = limx–>0+ (0)= 0 , f(0) = 0
=> f is continuous at x = 0
At x = 1, L.H.L. = limx–>1- (0) = 0,
R.H.L. = limx–>1+ 4x = 4
f(1) = 0, f(1) = L.H.L.≠R.H.L.
∴ f is not continuous at x = 1
when x < 0 f (x) = 2x, being a polynomial, it is
continuous at all points x < 0. when x > 1. f (x) = 4x being a polynomial, it is
continuous at all points x > 1.
when 0 ≤ x ≤ 1, f (x) = 0 is a continuous function
the point of discontinuity is x = 1.

Ex 5.1 Class 12 Maths Question 16.
\(f(x)=\begin{cases} -2,if\quad x\le -1 \\ 2x,if\quad -1<x\le 1 \\ 2,if\quad x>1 \end{cases}\)
Solution:
\(f(x)=\begin{cases} -2,if\quad x\le -1 \\ 2x,if\quad -1<x\le 1 \\ 2,if\quad x>1 \end{cases}\)
At x = – 1,L.H.L. = limx–>1- f(x) = – 2, f(-1) = – 2,
R.H.L. = limx–>1+ f(x) = – 2
=> f is continuous at x = – 1
At x= 1, L.H.L. = limx–>1- f(x) = 2,f(1) = 2
∴ f is continuous at x = 1,
R.H.L. = limx–>1+ f(x) = 2
Hence, f is continuous function.

Ex 5.1 Class 12 Maths Question 17.
Find the relationship between a and b so that the function f defined by
\(f(x)=\begin{cases} ax+1,if\quad x\le 3 \\ bx+3,if\quad x>3 \end{cases}\)
is continuous at x = 3
Solution:
At x = 3, L.H.L. = limx–>3- (ax+1) = 3a+1 ,
f(3) = 3a + 1, R.H.L. = limx–>3+ (bx+3) = 3b+3
f is continuous ifL.H.L. = R.H.L. = f(3)
3a + 1 = 3b + 3 or 3(a – b) = 2
a – b = \(\\ \frac { 2 }{ 3 } \) or a = b + \(\\ \frac { 2 }{ 3 } \), for any arbitrary value of b.
Therefore the value of a corresponding to the value of b.

Ex 5.1 Class 12 Maths Question 18.
For what value of λ is the function defined by
\(f(x)=\begin{cases} \lambda ({ x }^{ 2 }-2x),if\quad x\le 0 \\ 4x+1,if\quad x>0 \end{cases} \)
continuous at x = 0? What about continuity at x = 1?
Solution:
At x = 0, L.H.L. = limx–>0- λ (x² – 2x) = 0 ,
R.H.L. = limx–>0+ (4x+ 1) = 1, f(0)=0
f (0) = L.H.L. ≠ R.H.L.
=> f is not continuous at x = 0,
whatever value of λ ∈ R may be
At x = 1, limx–>1 f(x) = limx–>1 (4x + l) = f(1)
=> f is not continuous at x = 0 for any value of λ but f is continuous at x = 1 for all values of λ.

Ex 5.1 Class 12 Maths Question 19.
Show that the function defined by g (x) = x – [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.
Solution:
Let c be an integer, [c – h] = c – 1, [c + h] = c, [c] = c, g(x) = x – [x].
At x = c, limx–>c- (x – [x]) = limh–>0 [(c – h) – (c – 1)]
= limh–>0 (c – h – (c – 1)) = 1[∵ [c – h] = c – 1]
R.H.L. = limx–>c+ (x – [x])= limh–>0 (c + h – [c + h])
= limh–>0 [c + h – c] = 0
f(c) = c – [c] = 0,
Thus L.H.L. ≠ R.H.L. = f (c) => f is not continuous at integral points.

Ex 5.1 Class 12 Maths Question 20.
Is the function defined by f (x) = x² – sin x + 5 continuous at x = π?
Solution:
Let f(x) = x² – sinx + 5,
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q20.1

Ex 5.1 Class 12 Maths Question 21.
Discuss the continuity of the following functions:
(a) f (x) = sin x + cos x
(b) f (x) = sin x – cos x
(c) f (x) = sin x · cos x
Solution:
(a) f(x) = sinx + cosx
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q21.1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q21.2
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q21.3

Ex 5.1 Class 12 Maths Question 22.
Discuss the continuity of the cosine, cosecant, secant and cotangent functions.
Solution:
(a) Let f(x) = cosx
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q22.1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q22.2

Ex 5.1 Class 12 Maths Question 23.
Find all points of discontinuity of f, where
\(f(x)=\begin{cases} \frac { sinx }{ x } ,if\quad x<0 \\ x+1,if\quad x\ge 0 \end{cases}\)
Solution:
At x = 0
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q23.1

Ex 5.1 Class 12 Maths Question 24.
Determine if f defined by \(f(x)=\begin{cases} { x }^{ 2 }sin\frac { 1 }{ x } ,if\quad x\neq 0 \\ 0,if\quad x=0 \end{cases}\) is a continuous function?
Solution:
At x = 0
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q24.1

Ex 5.1 Class 12 Maths Question 25.
Examine the continuity of f, where f is defined by \(f(x)=\begin{cases} sinx-cosx,if\quad x\neq 0 \\ -1,if\quad x=0 \end{cases}\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q25.1

Find the values of k so that the function is continuous at the indicated point in Questions 26 to 29.

Ex 5.1 Class 12 Maths Question 26.
\(f(x)=\begin{cases} \frac { k\quad cosx }{ \pi -2x } ,\quad if\quad x\neq \frac { \pi }{ 2 } \quad at\quad x=\frac { \pi }{ 2 } \qquad \\ 3,if\quad x=\frac { \pi }{ 2 } \quad at\quad x=\frac { \pi }{ 2 } \end{cases} \)
Solution:
At x = \(\frac { \pi }{ 2 } \)
L.H.L = \(\underset { x\rightarrow { \left( \frac { \pi }{ 2 } \right) }^{ – } }{ lim } \frac { k\quad cosx }{ \pi -2x } \)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q26.1

Ex 5.1 Class 12 Maths Question 27.
\(f(x)=\begin{cases} { kx }^{ 2 },if\quad x\le 2\quad at\quad x=2 \\ 3,if\quad x>2\quad at\quad x=2 \end{cases} \)
Solution:
\(f(x)=\begin{cases} { kx }^{ 2 },if\quad x\le 2\quad at\quad x=2 \\ 3,if\quad x>2\quad at\quad x=2 \end{cases} \)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q27.1

Ex 5.1 Class 12 Maths Question 28.
\(f(x)=\begin{cases} kx+1,if\quad x\le \pi \quad at\quad x=\pi \\ cosx,if\quad x>\pi \quad at\quad x=\pi \end{cases} \)
Solution:
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q28.1

Ex 5.1 Class 12 Maths Question 29.
\(f(x)=\begin{cases} kx+1,if\quad x\le 5\quad at\quad x=5 \\ 3x-5,if\quad x>5\quad at\quad x=5 \end{cases} \)
Solution:
\(f(x)=\begin{cases} kx+1,if\quad x\le 5\quad at\quad x=5 \\ 3x-5,if\quad x>5\quad at\quad x=5 \end{cases} \)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q29.1

Ex 5.1 Class 12 Maths Question 30.
Find the values of a and b such that the function defined by
\(f(x)=\begin{cases} 5,if\quad x\le 2 \\ ax+b,if\quad 2<x<10 \\ 21,if\quad x\ge 10 \end{cases} \)
to is a continuous function.
Solution:
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q30.1

Ex 5.1 Class 12 Maths Question 31.
Show that the function defined by f(x)=cos (x²) is a continuous function.
Solution:
Now, f (x) = cosx², let g (x)=cosx and h (x) x²
∴ goh(x) = g (h (x)) = cos x²
Now g and h both are continuous ∀ x ∈ R.
f (x) = goh (x) = cos x² is also continuous at all x ∈ R.

Ex 5.1 Class 12 Maths Question 32.
Show that the function defined by f (x) = |cos x| is a continuous function.
Solution:
Let g(x) =|x|and h (x) = cos x, f(x) = goh(x) = g (h (x)) = g (cosx) = |cos x |
Now g (x) = |x| and h (x) = cos x both are continuous for all values of x ∈ R.
∴ (goh) (x) is also continuous.
Hence, f (x) = goh (x) = |cos x| is continuous for all values of x ∈ R.

Ex 5.1 Class 12 Maths Question 33.
Examine that sin |x| is a continuous function.
Solution:
Let g (x) = sin x, h (x) = |x|, goh (x) = g (h(x))
= g(|x|) = sin|x| = f(x)
Now g (x) = sin x and h (x) = |x| both are continuous for all x ∈ R.
∴f (x) = goh (x) = sin |x| is continuous at all x ∈ R.

Ex 5.1 Class 12 Maths Question 34.
Find all the points of discontinuity of f defined by f(x) = |x|-|x+1|.
Solution:
f(x) = |x|-|x+1|, when x< – 1,
f(x) = -x-[-(x+1)] = – x + x + 1 = 1
when -1 ≤ x < 0, f(x) = – x – (x + 1) = – 2x – 1,
when x ≥ 0, f(x) = x – (x + 1) = – 1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q34.1

We hope the NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 help you. If you have any query regarding NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • Wordfeud Cheat | Game Rules, Interesting Facts, Help, Tricks to win Wordfeud in English
  • ML Aggarwal Class 6 Solutions for ICSE Maths Chapter 7 Decimals Objective Type Questions
  • Multiplication-Decimal Numbers
  • Division-Decimal Numbers
  • Addition and Subtraction-Decimal Numbers
  • What is 368,492 rounded to the nearest ten-thousands?
  • NCERT Exemplar Class 6 Maths Chapter 4 Fractions and Decimals Solutions
  • Whole Numbers
  • Andhra Pradesh SSC Class 10 Solutions For Maths – Statistics
  • CBSE Revision Notes for Class 10 English Footprints Without Feet Chapter 7 The Necklace
  • Real Numbers Class 10 Maths CBSE Important Questions with Solutions
  • Lowest common Multiple
  • Factorization
  • ML Aggarwal Class 6 Solutions for ICSE Maths Chapter 4 Playing with Numbers Ex 4.5
  • Polynomials Class 10 Maths CBSE Important Questions with Solutions

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
cbse ncert
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions