• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

NCERT Solutions for Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles Ex 9.2

NCERT Solutions for Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles Ex 9.2 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles Ex 9.2.

  • Areas of Parallelograms and Triangles Class 9 Ex 9.1
  • Areas of Parallelograms and Triangles Class 9 Ex 9.2
  • Areas of Parallelograms and Triangles Class 9 Ex 9.3
  • Areas of Parallelograms and Triangles Class 9 Ex 9.4
Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 9
Chapter Name Areas of Parallelograms and Triangles
Exercise  Ex 9.2
Number of Questions Solved 6
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles Ex 9.2

Ex 9.2 Class 9 Maths Question 1.
In the given figure, ABCD is a parallelogram, AE ⊥ DC and CF ⊥ AD. If AB =16 cm,
AE = 8 cm and CF = 10 cm, find AD.
Solution.
NCERT Solutions for Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles Ex 9.2.1
Given, AB = 16 cm, AE = 8 cm and CF = 10 cm, D E
We know that
Area of a parallelogram = Base x Height = DC x AE
[ ∵  opposite sides of a parallelogram are equal i.e., AB = DC = 16 cm]
= 16 x 8 = 128 cm2…………….(i)
Area of a parallelogram = AD x CF
= AD x 10         …(ii)
From Eqs. (i) and (ii), we have
AD x 10 = 128
⇒ AD =\(\frac { 128 }{ 10 }\)= 12.8 cm.
Hence, the value of AD is 12.8 cm.

Ex 9.2 Class 9 Maths Question 2.
If E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD, show that ar (||gm EFGH) = \(\frac { 1 }{ 2 }\) ar (||gm ABCD).
Solution.
NCERT Solutions for Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles Ex 9.2.2
Given: E, F, G, and H are respectively mid-points of the sides AB, BC, CD, and AD.
To prove : ar (||gm EFGH) = \(\frac { 1 }{ 2 }\) (||gm ABCD)
Construction : Join HF.
Proof : Since, H and F are mid-points of AD and BC, respectively.
∴ DH = \(\frac { 1 }{ 2 }\)AD and CF = \(\frac { 1 }{ 2 }\) BC ……..(i)
Now, as ABCD is a parallelogram.
∴  AD = DC and AD || BC
\(\frac { 1 }{ 2 }\) AD = \(\frac { 1 }{ 2 }\)BC and DH || CF
⇒ DH = CF and DH || CF
So, HDCF is a parallelogram. [∵ a pair of opposite sides are equal and parallel]
Now, as the parallelogram HDCF and Δ HGF stand on the same base HF and lie between the same parallel lines DC and HF.
Similarly, ar (Δ HGF) = \(\frac { 1 }{ 2 }\) ar ( ||gm  HBFH)……….(ii)
similarly, ar (Δ HGF) = \(\frac { 1 }{ 2 }\) ar ( ||gm  ABFH)……….(iii)
On adding eqs. (ii) and (iii), we get
ar ( Δ HGF) + ar (Δ HEF) = i [ar (||gm HDCF) + ar (||gm ABFH)]
⇒ ar (EFGH) = \(\frac { 1 }{ 2 }\) ar( ||gm ABCD)
Hence Proved

Ex 9.2 Class 9 Maths Question 3.
P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar (Δ APB) ar (Δ BQC).
Solution.
NCERT Solutions for Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles Ex 9.2.3
Given: In parallelogram ABCD, P and Q are any two points lying on the sides DC, and AD, respectively.
To prove : ar (Δ APB) = ar (Δ BQC)
Proof : Here, parallelogram ABCD and ABQC stand on the same base BC and lie between the same parallel BC and AD.
ar(ΔBQC) = \(\frac { 1 }{ 2 }\) ar (||gm ABCD)        … (i)
Similarly, Δ APB and parallelogram ABCD stand on the same base AB and lie between the same parallel AB and CD.
∴ ar(Δ APB) = \(\frac { 1 }{ 2 }\) ar (||gm ABCD)   … (ii)
From eqs. (i) and (ii), we get
ar(Δ APB) = ar(Δ BQC)
Hence Proved.

Ex 9.2 Class 9 Maths Question 4.
In the figure, P is a point in the interior of a parallelogram ABCD. Show that
(i) ar (Δ APB) + ar(Δ PCD) = \(\frac { 1 }{ 2 }\) ar(||gm ABCD)
(ii) ar (Δ APD) + ar (Δ APBC) = ar (Δ APB) + ar(Δ PCD).
[Hint: Through P, draw a line parallel to AB]
NCERT Solutions for Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles Ex 9.2.4
Solution.
NCERT Solutions for Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles Ex 9.2.5
Given : ABCD is a parallelogram.
i.e., AB || CD and AD || BC
To prove :
(i) ar (Δ APB) + ar (Δ PCD) = \(\frac { 1 }{ 2 }\) ar(||gm ABCD)
(ii) ar(Δ APD) + ar (Δ PBC) = ar (Δ APB) + ar (Δ PCD)
Proof:
(i) Through the point P, draw MR parallel to AB.
∵ MR || AB and AM || BR [∵ AD || BC]
So, ABRM is a parallelogram.
Now, as Δ APB and parallelogram ABRM are on the same base AB and between the same parallels AB and MR.
∴ ar (Δ APB) = \(\frac { 1 }{ 2 }\) ar (||gm ABRM)
ar(Δ PCD) = ar (||gm MRCD)
Now, ar (ΔAPB) + ar (ΔPCD) = \(\frac { 1 }{ 2 }\) ar (IP ABRM) + \(\frac { 1 }{ 2 }\) ar (||gm  MRCD)
= \(\frac { 1 }{ 2 }\) ar (||gm  ABCD) …(i)

(ii) Clearly, ar (||gm  ABCD) = ar (ΔAPD) +ar (ΔPBC) + ar (Δ APB) + ar(Δ PCD)
= ar (ΔAPD) + ar (ΔPBC) +\(\frac { 1 }{ 2 }\) ar (||gm ABCD)     [from eq. (i)]
∴ ar(Δ APD) + ar (Δ PBC) = ar (||gm  ABCD) – \(\frac { 1 }{ 2 }\) ar (||gm  ABCD)
ar (||gm  ABCD)(\(1-\frac { 1 }{ 2 } \))
⇒ ar(Δ APD) + ar(Δ PBC) = – ar (||gm ABCD)   … (ii)
From eqs. (i) and (ii), we get
ar (Δ APD) + ar (Δ PBC) = ar (Δ APB) + ar (Δ PCD) Hence proved.

Ex 9.2 Class 9 Maths Question 5.
In the figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that
(i) ar (||9m PQRS) = ar (||gm ABRS)
(ii) ar (Δ AXS) =  ar (||gm PQRS)
NCERT Solutions for Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles Ex 9.2.6
Solution.
Given: PQRS and ABRS both are parallelograms and X is any point on BR.
To Prove : (i) ar (||gm PQRS = ar (||gm ABRS)
(ii) ar (Δ AXS) = \(\frac { 1 }{ 2 } \) ar (||gm PQRS)
Proof:
(i) Here, parallelograms PQRS and ABRS lie on the same base SR and between the same parallel lines SR and
∴ ar (||gm PQRS) = ar (||gm ABRS)   … (i)

(ii) Again, Δ AXS and parallelogram ABRS lie on the same base AS and between the same parallel lines AS and
∴  ar (Δ AXS) = \(\frac { 1 }{ 2 } \) ar (||gm ABRS)      … (ii)
From eqs. (i) and (ii), we get
ar (Δ AXS) = \(\frac { 1 }{ 2 } \) ar (||gm PQRS)
Hence proved.

Ex 9.2 Class 9 Maths Question 6.
A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the fields is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?
Solution.
NCERT Solutions for Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles Ex 9.2.7
Given, PQRS is a parallelogram and A is any point on RS. Now, join PA and  PQ. Thus, the field will fie divided into three parts and each part is in the shape of triangle.
Since, the Δ APQ and parallelogram PQRS lie on the same base PQ and between same parallel lines PQ and SR.
ar(Δ APQ) = \(\frac { 1 }{ 2 } \) ar( ||gm PQRS)    …(i)
Then, remaining
ar(Δ ASP) + ar(Δ ARQ) = ar(||gm PQRS)
Now, from Eqs. (i) and (ii), we get
ar(Δ  APQ) = ar(Δ ASP) + ar(Δ ARQ)
So, farmer has two options.
Either the farmer should sow wheat and pulses in Δ APS and Δ AQR or in ar [Δ AQP and (Δ APS and Δ AQR)] separately.

 

We hope the NCERT Solutions for Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles Ex 9.2 help you. If you have any query regarding NCERT Solutions for Class 9 Maths 9 Areas of Parallelograms and Triangles Ex 9.2, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • Algebra Coefficient of term Workedout problems
  • factor theorem applications Find factor of polynomial
  • CBSE Class 9 maths solutions Triangles Ex 7 1 NCERT Class 9 maths solutions
  • CBSE Class 9 Maths solutions Heron’s Formula Ex 12 2 NCERT Class 9 Maths solutions
  • CBSE Class 9 Maths solutions Heron’s Formula Ex 12 1 NCERT Class 9 Maths solutions
  • CBSE Class 9 maths solutions Introduction to Euclid’s Geometry Ex 5 1
  • CBSE Class 9 maths solutions Lines and Angles Ex 6 3 NCERT Class 9 maths solutions
  • factor theorem examples factor theorem questions
  • factoring cubic polynomials Factorise by splitting middle term and factor theorem Ex 2.4
  • factoring quadratic polynomial by splitting the middle term
  • Factoring Trinomials by Using the Punnett Square Ex 2 4
  • Factorise cubic polynomial factoring polynomials using algebraic identities Ex 2 5
  • Factorise polynomials Factorizing using algebraic identities Ex 2 5
  • Factorize perfect square trinomials Algebraic identities Ex 2 5
  • Factor theorem Find unknown coefficient in polynomial given factor of polynomial

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
cbse ncert
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions