• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

NCERT Solutions for Class 11 Maths Chapter 14 Mathematical Reasoning Ex 14.5

NCERT Solutions for Class 11 Maths Chapter 14 Mathematical Reasoning Ex 14.5 are part of NCERT Solutions for Class 11 Maths. Here we have given NCERT Solutions for Class 11 Maths Chapter 14 Mathematical Reasoning Ex 14.5.

  • Mathematical Reasoning Class 11 Ex 14.1
  • Mathematical Reasoning Class 11 Ex 14.2
  • Mathematical Reasoning Class 11 Ex 14.3
  • Mathematical Reasoning Class 11 Ex 14.4
Board CBSE
Textbook NCERT
Class Class 11
Subject Maths
Chapter Chapter 14
Chapter Name Mathematical Reasoning
Exercise Ex 14.5
Number of Questions Solved 5
Category NCERT Solutions

NCERT Solutions for Class 11 Maths Chapter 14 Mathematical Reasoning Ex 14.5

Ex 14.5 Class 11 Maths Question 1.
Show that the statement
p: “If x is a real number such that x3 + 4x = 0, then x is 0″ is true by
(i) direct method,
(ii) method of contradiction,
(iii) method of contrapositive.
Solution:
The given compound statement is of the form “if p then q”
p: x ϵ R such that x3 + 4x = 0
q: x = 0
(i) Direct method:
We assume that p is true, then
x ϵ R such that x3 + 4x = 0
⇒ x ϵ R such that x(x2 + 4) = 0
⇒ x ϵ R such that x = 0 or x2 + 4 = 0
⇒ x = 0 => q is true.
So, when p is true, q is true.
Thus, the given compound statement is true.

(ii) Method of contradiction :
We assume that p is true and q is false, then
x ϵ R such that x3 + 4x = 0
⇒ x ϵ R such that x(x2 + 4) = 0
⇒ x ϵ R such that x = 0 or x2 + 4 = 0
⇒ x = 0.
which is a contradiction. So, our assumption that x ≠ 0 is false. Thus, the given compound statement is true.

(iii) Method of contrapositive: We assume that q is false, then x ≠ 0
x ϵ R such that x3 + 4x = 0
⇒ x ϵ R such that x = 0 or x2 + 4 = 0
∴ statement q is false, so x ≠ 0. So, we have,
x ϵ R such that x2 = -2
Which is not true for any x ϵ R.
⇒ p is false
So, when q is false, p is false.
Thus, the given compound statement is true.

Ex 14.5 Class 11 Maths Question 2.
Show that the statement” For any real numbers a and b, a2 = b2 implies that a = b” is not true by giving a counter-example.
Solution:
The given compound statement is of the form “if p then q”
We assume that p is true, then a, b ⍷ R such that a2 = b2
Let us take a = -3 and b = 3
Now, a2 = b2, but a ≠ b
So, when p is true, q is false.
Thus, the given compound statement is not true.

Ex 14.5 Class 11 Maths Question 3.
Show that the following statement is true by the method of contrapositive.
p: If x is an integer and x2 is even, then x is also even.
Solution:
The given compound statement is of the form “if p then q”
p: x ϵ Z and x2 is even.
q: x is an even integer.
We assume that q is false, then x is not an even integer.
⇒ x is an odd integer.
⇒ x2 is an odd integer.
⇒ p is false
So, when q is false, p is false.
Thus, the given compound statement is true.

Ex 14.5 Class 11 Maths Question 4.
By giving a counter example, show that the following statements are not true.
(i) p: If all the angles of a triangle are equal, then the triangle is an obtuse angled triangle.
(ii) q: The equation x2 – 1 = 0 does not have a root lying between 0 and 2.
Solution:
(i) Since the triangle is an obtuse angled triangle then 0 > 90°.
Let 0 = 100°
Also, all the angles of the triangle are equal.
∴ Sum of all angles of the triangle is 300°, which is not possible.
Thus, the given compound statement is not true,

(ii) We see that x = 1 is a root of the equation x2 – 1 = 0, which lies between 0 and 2. Thus, the given compound statement is not true.

Ex 14.5 Class 11 Maths Question 5.
Which of the following statements are true and which are false? In each case give a valid reason for saying so.
(i) p. Each radius of a circle is a chord of the circle.
(ii) q: The center of a circle bisects each chord of the circle.
(iii) r. Circle is a particular case of an ellipse.
(iv) s: If x and y are integers such that x > y, then -x < -y.
(v) t. \(\sqrt { 11 } \) is a rational number.
Solution:
(i) A chord of a circle is a line whose two endpoints lie on the circle and all the points on the line lie inside the circle. So, the radius of a circle is not a chord of the circle.Thus, the given statement is false.
(ii) The center of a circle bisects chord of circle when the chord is diameter of circle. When the chord is other than diameter then center of circle does not lie on the chord. Thus, the given statement is false.
(iii) In the equation of an ellipse if we put a = b, then we get an equation of circle.
Thus, the given statement is true.
(iv) It is given that x, y ϵ Z such that x > y. Multiplying both sides by negative sign, we have
x, y ϵ Z such that -x < -y.
Thus, the given statement is true.
(v) Since \(\sqrt { 11 } \) cannot be expressed in the form \(\frac { a }{ b } \), where a and b are integers and b ≠ 0. Thus, the given statement is false.

We hope the NCERT Solutions for Class 11 Maths Chapter 14 Mathematical Reasoning Ex 14.5 help you. If you have any query regarding NCERT Solutions for Class 11 Maths Chapter 14 Mathematical Reasoning Ex 14.5, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • Algebra Coefficient of term Workedout problems
  • factor theorem applications Find factor of polynomial
  • CBSE Class 9 maths solutions Triangles Ex 7 1 NCERT Class 9 maths solutions
  • CBSE Class 9 Maths solutions Heron’s Formula Ex 12 2 NCERT Class 9 Maths solutions
  • CBSE Class 9 Maths solutions Heron’s Formula Ex 12 1 NCERT Class 9 Maths solutions
  • CBSE Class 9 maths solutions Introduction to Euclid’s Geometry Ex 5 1
  • CBSE Class 9 maths solutions Lines and Angles Ex 6 3 NCERT Class 9 maths solutions
  • factor theorem examples factor theorem questions
  • factoring cubic polynomials Factorise by splitting middle term and factor theorem Ex 2.4
  • factoring quadratic polynomial by splitting the middle term
  • Factoring Trinomials by Using the Punnett Square Ex 2 4
  • Factorise cubic polynomial factoring polynomials using algebraic identities Ex 2 5
  • Factorise polynomials Factorizing using algebraic identities Ex 2 5
  • Factorize perfect square trinomials Algebraic identities Ex 2 5
  • Factor theorem Find unknown coefficient in polynomial given factor of polynomial

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
cbse ncert
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions