• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

GSEB Solutions for Class 7 Mathematics – Polynomials

GSEB Solutions for Class 7 Mathematics – Polynomials (English Medium)

GSEB SolutionsMathsScience
Exercise 

Solution 1:

6x + 4x
= (6 + 4)x
= 10x

Solution 2:

-8x – 2x
= (-8 – 2)x
= -10x

Solution 3:

25x2 – 6x2
= (25 – 6)x2
= 19x2

Solution 4:

8x3 – (-2x3)
= 8x3 + 2x3
= (8 + 2)x3
= 10x3

Solution 5:

5x2 + 3y – 2x2
= 5x2 – 2x2 + 3y
= (5 – 2)x2 + 3y
= 3x2 + 3y

Solution 6:

6x + (5 – 3x)
= 6x + 5 – 3x
= 6x – 3x + 5
= 3x + 5

Solution 7:

12m2 – 9m + 5m
= 12m2 + (-9 + 5)m
= 12m2 – 4m

Solution 8:

2x2 + 3x – 5 + 2x – 4
= 2x2 + 3x + 2x – 5 – 4
= 2x2 + (3 + 2)x – 9
= 2x2 + 5x – 9

Solution 9:

12m2 – m + 5m + 4m2 + 7m – 10
= 12m2 + 4m2 – m + 5m + 7m – 10
= (12 + 4)m2 + (-1 + 5 + 7)m – 10
= 16m2 + 11m – 10

Solution 10:

(5x2 + 3) – (2x2 – 4x – 7)
= 5x2 + 3 – 2x2 + 4x + 7
= 5x2 – 2x2 + 4x + 3 + 7
= (5 – 2)x2 + 4x + 10
= 3x2 + 4x + 10

Solution 11:

(9 – 3y) + (x2 + 5y – 6)
= 9 – 3y + x2 + 5y – 6
= x2 – 3y + 5y + 9 – 6
= x2 + (-3 + 5)y + 3
= x2 + 2y + 3

Solution 12:

(15 + 5x2 – 10x) + (4x – 2x2 – 5)
= 15 + 5x2 – 10x + 4x – 2x2 – 5
= 5x2 – 2x2 – 10x + 4x + 15 – 5
= (5 – 2)x2 + (-10 + 4)x + 10
= 3x2 – 6x + 10

Solution 13:

(10 – 3x2 + 4x) + (2x2 – 8x – 2)
= 10 – 3x2 + 4x + 2x2 – 8x – 2
= -3x2 + 2x2 + 4x – 8x + 10 – 2
= (-3 + 2)x2 + (4 – 8)x + 8
= -x2 – 4x + 8

Solution 14:

(9x2 – 3x – 6) – (4x + 5 – 2x2)
= 9x2 – 3x – 6 – 4x – 5 + 2x2
= 9x2 + 2x2 – 3x – 4x – 6 – 5
= (9 + 2)x2 + (-3 – 4)x – 11
= 11x2 – 7x – 11

Practice – 1

Solution 1:

Like terms have the same variable/s raised to the same power. Pairs of like terms are as follows:

  1. 2x2, 3x2
  2. 6x2y2, 9x2y2
  3. 5xy, 7xy

Solution 2:

  1. Like terms: 4xyz, 6xyz, 7xyz
    Addition:
    4xyz + 6xyz + 7xyz
    =(4 + 6 + 7)xyz
    = 17xyz
  2. Like terms: 2x2y2, 3x2y2,9x2y2
    Addition:
    2x2y2 + 3x2y2 +9x2y2
    =(2 + 3 + 9)x2y2
    = 14 x2y2
  3. Like terms: 4x2, 18x2, 10x2
    Addition:
    4x2 + 18x2 + 10x2
    = (4 + 18 + 10)x2
    = 32x2

Solution 3:

(1) Perimeter of figure = Sum of the measures of all the sides
= 6a + a + 2a + 2a + a + 6a + 2a
= 20a
(2) The given figure is a rectangle.
Thus, perimeter = 2(length + breadth)
= 2(5b + 6b)
= 2(11b)
= 22b

Practice – 2

Solution 1:

Like terms have the same variable/s raised to the same power. Pairs of like terms are as follows:

  1. 2x2 and -3x2
    -3y and 8y
    6y2 and -4y2
  2. 3x2y and -5x2y
    -xy and 5xy
    5xy2 and -6xy2
    4x3 and -8x3

Solution 2:

Term Like tem
(1) 3a2 5a2
(2) -2y2z -3y2z
(3) -7x -5x
(4) -p2 -9p2
(5) 6abc -2abc
(6) 11xy 51xy

Solution 3:

  1. 2x2 and -3x2
    2x2 – (-3x2)
    = 2x2 + 3x2
    = (2 + 3)x2
    = 5x2
  2. -3y and 8y
    -3y – 8y
    = -(3 + 8)y
    =-11y
  3. 6y2 and -4y2
    6y2 – (-4y2)
    = 6y2 + 4y2
    = (6 + 4)y2
    = 10y2
  4. 3x2y and -5x2y
    3x2y – (-5x2y)
    = 3x2y +5x2y
    = (3 + 5)x2y
    = 8x2y
  5. -xy and 5xy
    -xy – 5xy
    = -(1 + 5)xy
    = -6xy
  6. 5xy2 and -6xy2
    5xy2 – (-6xy2)
    = 5xy2 + 6xy2
    = (5 + 6)xy2
    = 11xy2
  7. 4x3 and -8x3
    4x3 – (-8x3)
    = 4x3 + 8x3
    = (4 + 8)x3
    = 12x3

Solution 4:

  1. 4x2 – (-6xy2)
    = 4x2 + 6xy2
  2. 6x3 – (-2x3)
    = 6x3 + 2x3
    = (6 + 2)x3
    = 8x3
  3. 9xy – (5xy)
    = (9 – 5)xy
    = 4xy
  4. -7x3 – (-8x3y)
    = -7x3 + 8x3y

Practice – 3

Solution 1:

2x + (2x – 3)
= 2x + 2x – 3
= (2 + 2)x – 3
= 4x – 3

Solution 2:

(4m2 + 7) + 3m2
= 4m2 + 7 + 3m2
= (4 + 3)m2 + 7
= 7m2 + 7

Solution 3:

(-6m – 3) + 9
= -6m – 3 + 9
= -6m + 6

Solution 4:

(-5n) + (8n + 7)
= -5n + 8n + 7
= (-5n + 8n) + 7
= 3n + 7

Solution 5:

8x2 + 7 + (-8x2)
= 8x2 + 7 – 8x2
= (8 – 8)x2 + 7
= 0 + 7
= 7

Solution 6:

(3xy – 5) + 9xy
= (3 + 9)xy – 5
= 12xy – 5

Practice – 4

Solution 1:

Polynomials having two terms are called binomials.

  1. 2a + 3
  2. 5x – y
  3. 12m – 3
  4. 23 + p
  5. 4a – b

Solution 2:

  1. 3x + 2, 2x + 3
  2. 4x + 2, 7x – 5
  3. m + n, 3m + n
  4. 5p – 7, 2p – 4
  5. 2a + 2c, 3a – 2c
  6. 6a – 11, 3a – 12
  7. 3s + 2, s – 3
  8. 2x – 3, 4x – 5
  9. 3x + 1, x – 2
  10. 9a – 2b, 2a – 3b

Solution 3:

  1.  3x + 2 + 2x + 3
    = 3x + 2x + 2 + 3
    = (3 + 2)x + 5
    = 5x + 5
  2.  4x + 2 + 7x – 5
    = 4x + 7x – 5 + 2
    = (4 + 7)x – 3
    = 11x – 3
  3. m + n + 3m + n
    = m + 3m + n + n
    = 4m + 2n
  4. 5p – 7 + 2p – 4
    = 5p + 2p – 4 – 7
    = (5 + 2)p – (4 + 7)
    = 7p – 11
  5. 2a + 2c + 3a – 2c
    = 2a + 3a + 2c – 2c
    = (2 + 3)a + (2 – 2)c
    = 5a + 0
    = 5a
  6.  6a – 11 + 3a – 12
    = 6a + 3a – 11 – 12
    = (6 + 3)a – (11 + 12)
    = 9a – 23
  7.  3s + 2 + s – 3
    = 3s + s + 2 – 3
    = (3 + 1)s + 2 – 3
    = 4s – 1
  8.  2x – 3 + 4x – 5
    = 2x + 4x – 3 – 5
    = (2 + 4)x – (3 + 5)
    = 6x – 8
  9.  3x + 1 + x – 2
    = 3x + x + 1 – 2
    = (3 + 1)x – 1
    = 4x – 1
  10.  9a – 2b + 2a – 3b
    = 9a + 2a – 2b – 3b
    = (9 + 2)a – (2 + 3)b
    = 11a – 5b

Solution 4:

  1. (4xy + 5x2) + (6xy – 2x2)
    = 4xy + 6xy + 5x2 – 2x2
    = (4 + 6)xy + (5 – 2)x2
    = 10xy + 3x2
  2. (3x + y) +(3x – 7y)
    = 3x + 3x + y – 7y
    = (3 + 3)x + (1 – 7)y
    = 6x + (-6)y
    = 6x – 6y
  3. (3xy2 – 4) + (6xy2 + 8)
    = 3xy2 + 6xy2 – 4 + 8
    = (3 + 6)xy2 – 4 + 8
    = 9xy2 + 4

Practice – 5

Solution 1:

(8p2 + 5) – (9p2 – 7)
= 8p2 + 5 – 9p2 + 7
= 8p2 – 9p2 + 5 + 7
= (8 – 9)p2 + 12
= -p2 + 12

Solution 2:

(3m + 4n) – (6n + 5m)
= 3m + 4n – 6n – 5m
= 3m – 5m + 4n – 6n
= (3 – 5)m + (4 – 6)n
= -2m – 2n

Solution 3:

(3p2) – (7p2 – 5)
= 3p2 – 7p2 + 5
= (3 – 7)p2 + 5
= -4p2 + 5

Solution 4:

(16a + 5b) – (-7b)
= 16a + 5b +7b
= 16a + (5 + 7)b
= 16a + 12b

Solution 5:

(-10b + 8) – (-3b)
= -10b + 8 + 3b
= -10b + 3b + 8
= (-10 + 3)b + 8
= -7b + 8

Solution 6:

(7x – 9) – 15
= 7x – 9 – 15
= 7x – 24

Solution 7:

(-3x – 5y) – (7x + 2y)
= -3x – 5y – 7x – 2y
= -3x – 7x – 5y – 2y
= (-3 – 7)x – (5 + 2)y
= -10x – 7y

Solution 8:

(abc + xy) – (3xy – 13abc)
= abc + xy – 3xy + 13abc
= abc + 13abc + xy – 3xy
= (1 + 13)abc + (1 – 3)xy
= 14abc – 2xy

Solution 9:

(7) – (a2 – 10)
= 7 – a2 + 10
= 7 + 10 – a2
= 17 – a2

Solution 10:

(15x2 + y2) – (10x2 – 2y2)
= 15x2 + y2 – 10x2 + 2y2
= 15x2 – 10x2 + y2 + 2y2
= (15 – 10)x2 + (1 + 2)y2
= 5x2 + 3y2

Practice – 6

Solution 1:

(2x + 3y + 5) + (-7x)
= 2x + 3y + 5 – 7x
= 2x – 7x + 3y + 5
= (2 – 7)x + 3y + 5
= -5x + 3y + 5

Solution 2:

(12m2 – 9m + 7) + (3m – 8)
= 12m2 – 9m + 7 + 3m – 8
= 12m2 – 9m + 3m + 7 – 8
= 12m2 + (-9 + 3)m + (7 – 8)
= 12m2 – 6m – 1

Solution 3:

(2x2 + 3x – 5) + (2x2 – 4)
= 2x2 + 3x – 5 + 2x2 – 4
= 2x2 + 2x2 + 3x – 5 – 4
= (2 + 2)x2 + 3x + (-5 – 4)
= 4x2 + 3x – 9

Solution 4:

(9b – 10a + 15) + (3a + b + 2)
= 9b – 10a + 15 + 3a + b + 2
= 9b + b – 10a + 3a + 15 + 2
= (9 + 1)b + (-10 + 3)a + 17
= 10b – 7a + 17

Solution 5:

(17a – 13b – 14) + (10a – 9b – 15)
= 17a – 13b – 14 + 10a – 9b – 15
= 17a + 10a – 13b – 9b – 14 – 15
= (17 + 10)a + (-13 – 9)b + (-14 – 15)
= 27a – 22b – 29

Solution 6:

(4p2 – 3p – 10) + (30)
= 4p2 – 3p – 10 + 30
= 4p2 – 3p + 20

Practice – 7

Solution 1:

(x2 + 2xy + y2) – (10x2)
= x2 + 2xy + y2 – 10x2
= x2 – 10x2 + 2xy + y2
= (1 – 10)x2 + 2xy + y2
= -9x2 + 2xy + y2

Solution 2:

(6a3 + 10b2 – 25ab) – (-25ab)
= 6a3 + 10b2 – 25ab + 25ab
= 6a3 + 10b2

Solution 3:

(a2 + b2 – 7ab) – (3b2)
= a2 + b2 – 7ab – 3b2
= a2 + b2 – 3b2 – 7ab
= a2 + (1 – 3)b2 – 7ab
= a2 – 2b2 – 7ab

Solution 4:

(10x2 + 6xy + y2) – (9x2 – y2)
= 10x2 + 6xy + y2 – 9x2 + y2
= 10x2 – 9x2 + 6xy + y2 + y2
= (10 – 9)x2 + 6xy + (1 + 1)y2
= x2 + 6xy + 2y2

Solution 5:

(3abc + 5bc – 6ac) – (-7abc – 9bc)
= 3abc + 5bc – 6ac + 7abc + 9bc
= 3abc + 7abc + 5bc + 9bc – 6ac
= (3 + 7)abc + (5 + 9)bc – 6ac
= 10abc + 14bc – 6ac

Solution 6:

(2x – 3y + 15) – (13y + 12)
= 2x – 3y + 15 – 13y – 12
= 2x – 3y – 13y + 15 – 12
= 2x + (-3 – 13)y + 3
= 2x – 16y + 3

Solution 7:

(-5xy – 8x – 9) – (7xy – 7x + 6)
= -5xy – 8x – 9 – 7xy + 7x – 6
= -5xy – 7xy – 8x + 7x – 9 – 6
= (-5 – 7)xy + (-8 + 7)x – 15
= -12xy – x – 15

Solution 8:

(a2 + b2 + 2ab) – (3a2 – 2ab + 5b2)
= a2 + b2 + 2ab – 3a2 + 2ab – 5b2
= a2 – 3a2 + b2 – 5b2 + 2ab + 2ab
= (1 – 3)a2 + (1 – 5)b2 + (2 + 2)ab
= -2a2 – 4b2 + 4ab

Solution 9:

(3x2 + 3x – 5) – (2x2 – 8x – 5)
= 3x2 + 3x – 5 – 2x2 + 8x + 5
= 3x2 – 2x2 + 3x + 8x – 5 + 5
= (3 – 2)x2 + (3 + 8)x + 0
= x2 + 11x

Solution 10:

(3x2 + 5xy – 9) – (x2 – 2xy + 5)
= 3x2 + 5xy – 9 – x2 + 2xy – 5
= 3x2 – x2 + 5xy + 2xy – 9 – 5
= (3 – 1)x2 + (5 + 2)xy – 14
= 2x2 + 7xy – 14

Solution 11:

(2x2 – x + 14) – (5x – 3x2 + 8)
= 2x2 – x + 14 – 5x + 3x2 – 8
= 2x2 + 3x2 – x – 5x + 14 – 8
= (2 + 3)x2+ (-1 – 5)x + 6
= 5x2 – 6x + 6

Solution 12:

(9x2 + 5x – 17) – (15 – 4x + 3x2)
= 9x2 + 5x – 17 – 15 + 4x – 3x2
= 9x2 – 3x2 + 5x + 4x – 17 – 15
= (9 – 3)x2 + (5 + 4)x – 32
= 6x2 + 9x – 32

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • ML Aggarwal Class 7 Solutions for ICSE Maths Chapter 16 Perimeter and Area Ex 16.3
  • Paragraph on Madhur Vani in Hindi | मधुर वाणी पर अनुच्छेद लेखन
  • Coordinate Geometry Class 10 Maths CBSE Important Questions With Solutions
  • Sambandh Bodhak in Hindi | संबंधबोधक (Preposition) की परिभाषा एवं उनके भेद और उदाहरण (हिन्दी व्याकरण)
  • NCERT Solutions for Class 7 Maths Chapter 12 Algebraic Expressions InText Questions
  • CBSE Revision Notes for Class 10 English First Flight Chapter 8 Mijbil the Otter
  • Maharashtra Board Class 10 Solutions for Marathi कुमारभारती – कथालेखन
  • NCERT Class 10 Science Lab Manual CO2 is Released During Respiration
  • NCERT Solutions for Class 12 Hindi Core – कार्यालयी हिंदी और रचनात्मक लेखन – कार्यालयी पत्र
  • NCERT Solutions for Class 7 Maths Chapter 13 Exponents and Powers InText Questions
  • NCERT Class 10 Science Lab Manual Dicot Seed
  • NCERT Exemplar Problems Class 7 Maths – Exponents and Powers
  • NCERT Solutions for Class 11 Chemistry Chapter 4 Chemical Bonding and Molecular Structure
  • CBSE Revision Notes for Class 10 English First Flight Chapter 1 A Letter to God
  • NCERT Exemplar Class 10 Maths Solutions Chapter 11 Area Related To Circles

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions