• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

  • NCERT Solutions
    • NCERT Solutions for Class 12 English Flamingo and Vistas
    • NCERT Solutions for Class 11 English
    • NCERT Solutions for Class 11 Hindi
    • NCERT Solutions for Class 12 Hindi
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations

CBSETuts.com provides you Free PDF download of NCERT Exemplar Class 10 Maths chapter 4 Quadratic Equations solved by expert teachers as per NCERT (CBSE) book guidelines. All the chapterwise questions with solutions to help you to revise complete CBSE syllabus and score more marks in Your board examinations. According to new CBSE Exam Pattern, MCQ Questions for Class 10 Maths Carries 20 Marks.

You can also Download NCERT Solutions for class 10 Maths in Hindi to help you to revise complete Syllabus and score more marks in your examinations.

NCERT Exemplar Problems Class 10 Maths Solutions Chapter 4 Quadratic Equations

Exercise 4.1 Multiple Choice Questions (MCQs)

Question 1:
Which of the following is a quadratic equation?
(a) x2 + 2x + 1 = (4 – x)2 + 3
(b) – 2x2 = (5 – x) (2x – \(\frac { 2 }{ 5 } \)
(c) (k + 1)x2 + – \(\frac { 3 }{ 2 } \)x = 7, where k = -1
(d) x3 – x2 =(x -1)3
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-1
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-2

Question 2:
Which of the following is not a quadratic equation?
(a) 2 (x -1)2 = 4x2 – 2x +1
(b) 2x – x2 = x2 + 5
(c) (-√2X +√3)2 = 3x2 – 5x
(d) (x2 + 2x)2 = x4 + 3 + 4x2
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-3

Question 3:
Which of the following equations has 2 as a root?
(a) x2-4x + 5=0
(b) x2 + 3x-12 =0
(c) 2x2 – 7x + 6 = 0
(d) 3x2 – 6x – 2 = 0
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-4

Question 4:
If \(\frac { 1 }{ 2 } \) is a root of the equation x2 + kx –\(\frac { 5 }{ 4 } \) = 0, then the value of k is
(a) 2         (b) -2                          (c) \(\frac { 1 }{ 4 } \)                             (d)\(\frac { 1 }{ 2 } \)
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-5

Question 5:
Which of the following equations has the sum of its roots as 3?
(a) 2x2 – 3x + 6 = 0
(b) -x2 + 3x – 3 = 0
(c) √2x2 – \(\frac { 3 }{ \sqrt { 2 }}\)x + 1 = 0
(d) 3x2 – 3x + 3 = 0
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-6

Question 6:
Value(s) of k for which the quadratic equation 2x2 -kx + k = 0 has equal roots is/are
(a) 0                           (b) 4                            (c) 8                          (d) 0, 8
Solution:
(d)
Given equation is 2x2 – kx + k- 0
On comparing with ax2 + bx + c = 0, we get
a = 2, b= – k and c = k
For equal roots, the discriminant must be zero.
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-7
Hence, the required values of k are 0 and 8.

Question 7:
Which constant must be added and subtracted to solve the quadratic
equation 9x2 +\(\frac { 3 }{ 4 } \) x – √2= 0 by the method of completing the square?
(a) \(\frac { 1 }{ 8 } \)                  (b) \(\frac { 1 }{ 64 } \)                           (c) \(\frac { 1 }{ 4 } \)                 (d) \(\frac { 9 }{ 64 } \)
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-8

Question 8:
The quadratic equation 2x2 – √5x + 1 = 0 has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-9

Question 9:
Which of the following equations has two distinct real roots?
(a)2x2-3√2x +\(\frac { 9 }{ 4 } \) =0
(b) x2 + x – 5 =0
(c) x2 + 3x + 2√2 =0
(d)5x2-3x + 1=0
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-10

Question 10:
Which of the following equations has no real roots?
(a) x2 – 4x + 3√2 =0
(b)x2+4x-3√2=0
(c) x2 – 4x – 3√2 = 0
(d) 3x2 + 4√3x + 4=0
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-11
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-12

Question 11:
(x2 +1)2 – x2 = 0 has
(a) four real roots
(b) two real roots
(c) no real roots
(d) one real root
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-13

Exercise 4.2 Very Short Answer Type Questions

Question 1:
State whether the following quadratic equations have two distinct real roots. Justify your answer.
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-14
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-15
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-16
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-17
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-18

Question 2:
Write whether the following statements are true or false. Justify your answers.
(i) Every quadratic equation has exactly one root.
(ii) Every quadratic equation has atleast one real root.
(iii) Every quadratic equation has atleast two roots.
(iv) Every quadratic equation has atmost two roots.
(v) If the coefficient of x2 and the constant term of a quadratic equation have opposite
signs, then the quadratic equation has real roots.
(vi) If the coefficient of x2 and the constant term have the same sign and if the coefficient of x term is zero, then the quadratic equation has no real roots.
Solution:
(i)   False, since a quadratic equation has two and only two roots.
(ii)  False, for example x2 + 4 = O has no real root.
(iii) False, since a quadratic equation has two and only two roots.
(vi)  True, because every quadratic polynomial has atmost two roots.
(v)   True, since in this case discriminant is always positive, so it has always real roots, e., ac < 0 and so, b2 – 4ac > 0.
(vi) True, since in this case discriminant is always negative, so it has no real roots e., if b = 0, then b2 – 4ac ⇒ – 4ac < 0and ac>0.

polynomial root calculator, Factoring Polynomials. Factoring a polynomial is the opposite process of multiplying polynomials.

Question 3:
A quadratic equation with integral coefficient has integral roots. Justify your answer.
Solution:
No, consider the quadratic equation 2x2 + x-6=0 with integral coefficient. The roots of
the given quadratic equation are -2 and \(\frac { 3 }{ 2 } \) which are not integers.

Question 4:
Does there exist a quadratic equation whose coefficients are rational but both of its roots are irrational? Justify your answer.
Solution:
Yes, consider the quadratic equation 2x2 + x – 4 = Owith rational coefficient. The roots ofthe given quadratic equation are \(\frac { -1+\sqrt { 33 } }{4}\) and \(\frac { -1-\sqrt { 33 } }{ 4 }\) are irrational.

Question 5:
Does there exist a quadratic equation whose coefficient are all distinct irrationals but both the roots are rationals? why?
Solution:
Yes, consider the quadratic equation with all distinct irrationals coefficients i.e., √3x2 – 7 √3x + 12√3 = 0. The roots of this quadratic equation are 3 and 4, which are rationals.

Question 6:
Is 0.2 a root of the equation x2 – 0.4 = 0? Justify your answer.
Solution:
No, since 0.2 does not satisfy the quadratic equation i.e., ( 0.2)2 – 0.4 = 0.04 – 0.4 ≠0.

Question 7:
If b = 0, c < 0, is it true that the roots of x2 + bx + c = 0 are numerically equal and opposite in sign? Justify your answer.
Solution:
Given that, b = 0andc < 0and quadratic equation,
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-19
So, the roots of x2 + bx+c = O are numerically equal and opposite in sign.

Exercise 4.3 Short Answer Type Questions

Question 1:

Find the roots of the quadratic equations by using the quadratic formula irt each of the following
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-20
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-21
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-22
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-23

Question 2:
Find the roots of the following quadratic equations by the factorisation method.
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-24
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-25
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-26
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-27
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-28

Exercise 4.4 Long Answer Type Questions

Question 1:
Find whether the following equations have real roots. If real roots exist, find them
(i) 8x2 +2x -3=0
(ii) – 2x2 + 3x + 2 = 0
(iii) 5x2 – 2x- 10 = 0
(iv) \(\frac { 1 }{ 2x-3 } +\frac { 1 }{ x-5 }\)= 1,x≠\(\frac { 3 }{ 2 } \),5
(v) x2 + 5 √5x – 70 = 0
Solution:
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-29
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-30
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-31
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-32

Question 2:
Find a natural number whose square diminished by 84 is equal to thrice of 8 more than the given number.
Solution:
Let n be a required natural number.
Square of a natural number diminished by 84 = n2 – 84 and thrice of 8 more than the natural number = 3 (n + 8)
Now, by given condition,
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-33

Question 3:
A natural number, when increased by 12, equals 160 times its reciprocal.Find the number.
Solution:
Let the natural number be x.
According to the question,
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-34
Now, x + 20 = 0 ⇒ x = – 20 which is not possible because natural number is always greater than zero and x-8 = 0⇒x = 8.
Hence, the required natural number is 8.

Question 4:
A train, travelling at a uniform speed for 360 km, would have taken 48 min less to travel the same distance, if its speed were 5 km/h more. Find the original speed of the train.
Solution:
Let the original speed of the train = x km/h
Then, the increased speed of the train = (x + 5) km/h                   [by given condition]
and distance = 360 km
According to the question,
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-35
Now, x+50=0⇒x=-50
which is not possible because speed cannot be negative and x – 45 = 0⇒x = 45. Hence, the original speed of the train = 45 km/h

Question 5:
If Zeba were younger by 5 yr than what she really is, then the square of, her age (in years) would have been 11, more than five times her actual age, what is her age now?
Solution:
Let the actual age of Zeba = x yr,
Herage when she was 5 yr younger = (x – 5)yr.
Now, by given condition,
Square of her age = 11 more than five times her actual age
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-36
[here, x ≠ 1 because her age is x – 5. So, x – 5 = 1 – 5 = – 4 i.e., age cannot be negative]  Hence, required Zeba’s age now is 14 yr.

Question 6:
At present Asha’s age (in years) is 2 more than the square of her daughter Nisha’s age. When Nisha grows to her mother’s present age. Asha’s age would be one year less than 10 times the present age of Nisha. Find the present ages of both Asha and Nisha.
Solution:
Let Nisha’s present age be x yr.
Then, Asha’s present age = x2 + 2                                                               [by given condition]
Now, when Nisha grows to her mother’s present age i.e., after [(x2 +2)- x] yr. Then, Asha’s age also increased by [(x2 + 2) – x]yr.
Again by given condition,
Age of Asha = One years less than 10 times the present age of Nisha
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-37
Hence, required age of Nisha = 5yr
and required age of Asha = x2 + 2 = (5)2 + 2 = 25 + 2 = 27 yr

Question 7:
In the centre of a rectangular lawn of dimensions 50m x 40m, a rectangular pond has to be constructed, so that the area of the grass surrounding the pond would be 1184 m2[see figure]. Find the length and breadth of the pond.
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-38
Solution:
Given that a rectangular pond has to be constructed in the centre of a rectangular lawn of dimensions 50 mx 40 m So, the distance between pond and lawn would be same around the pond. Say x m.
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-39
Now, length of rectangular lawn (l1) = 50 m and breadth of rectangular lawn (b1) = 40 m Length of rectangular pond (l2)= 50 – (x + x) = 50 – 2x
and breadth of rectangular pond (b2) = 40 – (x+ x)= 40-2x
Also, area of the grass surrounding the pond =1184 m2
Area of rectangular lawn – Area of rectangular pond
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-40
∴                                                                  x=8
[At x = 37, length and breadth of pond are -24 and -34, respectively but length and
breadth cannot be negative. So, x = 37 cannot be possible]
∴                                         Length of pond = 50- 2x= 50- 2 (8)= 50- 16= 34 m
and                             breadth of pond = 40 – 2x = 40 – 2(8) = 40 – 16 = 24 m                       ‘
Hence, required length and breadth of pond are 34 m and 24 m, respectively.

Question 8:
At t min past 2 pm, the time needed by the minute hand of a clock to show 3 pm was found to be 3 min less than  \(\frac { { t }^{ 2 } }{ 4 } \)min. Find t.
Solution:
We know that, the time between 2 pm to 3 pm = 1 h = 60 min
Given that, at f min past 2pm, the time needed by the min hand of a clock to show 3 pm was found to be 3 min less than \(\frac { { t }^{ 2 } }{ 4 } \) min i,e
NCERT Exemplar Class 10 Maths Solutions Chapter 4 Quadratic Equations img-41
Hence, the required value off is 14 min.

NCERT Exemplar ProblemsNCERT Exemplar MathsNCERT Exemplar Science

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers
  • The Summer Of The Beautiful White Horse Answers
  • Job Application Letter class 12 Samples
  • Science Lab Manual Class 9
  • Letter to The Editor Class 12 Samples
  • Unseen Passage For Class 6 Answers
  • NCERT Solutions for Class 12 Hindi Core
  • Invitation and Replies Class 12 Examples
  • Advertisement Writing Class 11 Examples
  • Lab Manual Class 10 Science

Recent Posts

  • Understanding Diversity Question Answer Class 6 Social Science Civics Chapter 1 NCERT Solutions
  • Our Changing Earth Question Answer Class 7 Social Science Geography Chapter 3 NCERT Solutions
  • Inside Our Earth Question Answer Class 7 Social Science Geography Chapter 2 NCERT Solutions
  • Rulers and Buildings Question Answer Class 7 Social Science History Chapter 5 NCERT Solutions
  • On Equality Question Answer Class 7 Social Science Civics Chapter 1 NCERT Solutions
  • Role of the Government in Health Question Answer Class 7 Social Science Civics Chapter 2 NCERT Solutions
  • Vital Villages, Thriving Towns Question Answer Class 6 Social Science History Chapter 9 NCERT Solutions
  • New Empires and Kingdoms Question Answer Class 6 Social Science History Chapter 11 NCERT Solutions
  • The Delhi Sultans Question Answer Class 7 Social Science History Chapter 3 NCERT Solutions
  • The Mughal Empire Question Answer Class 7 Social Science History Chapter 4 NCERT Solutions
  • India: Climate Vegetation and Wildlife Question Answer Class 6 Social Science Geography Chapter 8 NCERT Solutions
  • Traders, Kings and Pilgrims Question Answer Class 6 Social Science History Chapter 10 NCERT Solutions
  • Environment Question Answer Class 7 Social Science Geography Chapter 1 NCERT Solutions
  • Understanding Advertising Question Answer Class 7 Social Science Civics Chapter 7 NCERT Solutions
  • The Making of Regional Cultures Question Answer Class 7 Social Science History Chapter 9 NCERT Solutions

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions