• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

  • NCERT Solutions
    • NCERT Solutions for Class 12 English Flamingo and Vistas
    • NCERT Solutions for Class 11 English
    • NCERT Solutions for Class 11 Hindi
    • NCERT Solutions for Class 12 Hindi
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 are part of NCERT Solutions for Class 12 Maths. Here we have given NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3.

  • Relations and Functions Class 12 Ex 1.1
  • Relations and Functions Class 12 Ex 1.2
  • Relations and Functions Class 12 Ex 1.4
Board CBSE
Textbook NCERT
Class Class 12
Subject Maths
Chapter Chapter 1
Chapter Name Relations and Functions
Exercise Ex 1.3
Number of Questions Solved 14
Category NCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3

Ex 1.3 Class 12 Maths Question 1.
Let f: {1,3,4} –> {1,2, 5} and g : {1, 2,5} –> {1,3} be given by f = {(1, 2), (3,5), (4,1) and g = {(1,3), (2,3), (5,1)}. Write down g of.
Solution:
f= {(1,2),(3,5),(4,1)}
g= {(1,3),(2,3),(5,1)}
f(1) = 2, g(2) = 3 => gof(1) = 3
f(3) = 5, g(5)= 1 =>gof(3) = 1
f(4) = 1, g(1) = 3 => gof(4) = 3
=> gof= {(1,3), (3,1), (4,3)}

Ex 1.3 Class 12 Maths Question 2.
Let f, g and h be functions from R to R. Show that (f + g) oh = foh + goh, (f • g) oh = (foh) • (goh)
Solution:
f + R –> R, g: R –> R, h: R –> R
(i) (f+g)oh(x)=(f+g)[h(x)]
= f[h(x)]+g[h(x)]
={foh} (x)+ {goh} (x)
=>(f + g) oh = foh + goh
(ii) (f • g) oh (x) = (f • g) [h (x)]
= f[h (x)] • g [h (x)]
= {foh} (x) • {goh} (x)
=> (f • g) oh = (foh) • (goh)

Ex 1.3 Class 12 Maths Question 3.
Find gof and fog, if
(i) f (x) = |x| and g (x) = |5x – 2|
(ii) f (x) = 8x³ and g (x) = \({ x }^{ 1/3 }\).
Solution:
(i) f(x) = |x|, g(x) = |5x – 2|
(a) gof(x) = g(f(x)) = g|x|= |5| x | – 2|
(b) fog(x) = f(g (x)) = f(|5x – 2|) = ||5 x – 2|| = |5x-2|
(ii) f(x) = 8x³ and g(x) = \({ x }^{ 1/3 }\)
(a) gof(x) = g(f(x)) = g(8x³) = \({ { (8x }^{ 3 }) }^{ 1/3 }\) = 2x
(b) fog (x) = f(g (x))=f(\({ x }^{ 1/3 }\)) = 8.(\({ x }^{ 1/3 }\))³ = 8x

Ex 1.3 Class 12 Maths Question 4.
If \(f(x)=\frac { 4x+3 }{ 6x-4 } x\neq \frac { 2 }{ 3 } \), show that fof (x) = x, for all \(x\neq \frac { 2 }{ 3 } \). What is the inverse of f?
Solution:
\(f(x)=\frac { 4x+3 }{ 6x-4 } x\neq \frac { 2 }{ 3 } \)
(a) fof (x) = f(f(x)) = \(f\frac { 4x+3 }{ 6x-4 } \)
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 Q4.1

Ex 1.3 Class 12 Maths Question 5.
State with reason whether following functions have inverse
(i) f: {1,2,3,4}–>{10} with f = {(1,10), (2,10), (3,10), (4,10)}
(ii) g: {5,6,7,8}–>{1,2,3,4} with g = {(5,4), (6,3), (7,4), (8,2)}
(iii) h: {1,2,3,4,5}–>{7,9,11,13} with h = {(2,7), (3,9), (4,11), (5,13)}
Solution:
f: {1,2,3,4} –> {10} with f = {(1,10), (2,10), (3,10), (4,10)}
(i) f is not one-one since 1,2,3,4 have the same image 4.
=> f has no inverse.
(ii) g: {5,6,7,8} –> {1,2,3,4} with g = {(5,4), (6,3) , (7,4), (8,2)}
Here also 5 and 7 have the same image
∴ g is not one-one. Therefore g is not invertible.
(iii) f has an inverse

Ex 1.3 Class 12 Maths Question 6.
Show that f: [-1,1] –> R, given by f(x) = \(\frac { x }{ (x+2) } \) is one-one. Find the inverse of the function f: [-1,1] –> Range f.
Hint – For y ∈ Range f, y = f (x) = \(\frac { x }{ (x+2) } \) for some x in [- 1,1], i.e., x = \(\frac { 2y }{ (1-y) } \)
Solution:
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 Q6.1

Ex 1.3 Class 12 Maths Question 7.
Consider f: R –> R given by f (x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Solution:
f: R—>R given by f(x) = 4x + 3
f (x1) = 4x1 + 3, f (x2) = 4x2 + 3
If f(x1) = f(x2), then 4x1 + 3 = 4x2 + 3
or 4x1 = 4x2 or x1 = x2
f is one-one
Also let y = 4x + 3, or 4x = y – 3
∴ \(x=\frac { y-3 }{ 4 } \)
For each value of y ∈ R and belonging to co-domain of y has a pre-image in its domain.
∴ f is onto i.e. f is one-one and onto
f is invertible and f-1 (y) = g (y) = \(\frac { y-3 }{ 4 } \)

Ex 1.3 Class 12 Maths Question 8.
Consider f: R+ –> [4, ∞] given by f (x) = x² + 4. Show that f is invertible with the inverse f-1 of f given by f-1 (y) = √y-4 , where R+ is the set of all non-negative real numbers.
Solution:
f(x1) = x12 + 4 and f(x2) = x22 + 4
f(x1) = f(x2) => x12 + 4 = x22 + 4
or x12 = x22 => x1 = x2 As x ∈ R
∴ x>0, x12 = x22 => x1 = x2 =>f is one-one
Let y = x² + 4 or x² = y – 4 or x = ±√y-4
x being > 0, -ve sign not to be taken
x = √y – 4
∴ f-1 (y) = g(y) = √y-4 ,y ≥ 4
For every y ≥ 4, g (y) has real positive value.
∴ The inverse of f is f-1 (y) = √y-4

Ex 1.3 Class 12 Maths Question 9.
Consider f: R+ –> [- 5, ∞) given by f (x) = 9x² + 6x – 5. Show that f is invertible with
\({ f }^{ -1 }(y)=\left( \frac { \left( \sqrt { y+6 } \right) -1 }{ 3 } \right) \)
Solution:
Let y be an arbitrary element in range of f.
Let y = 9x² + 6x – 5 = 9x² + 6x + 1 – 6
=> y = (3x + 1)² – 6
=> y + 6 = (3x + 1)²
=> 3x + 1 = √y + 6
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 Q9.1

Ex 1.3 Class 12 Maths Question 10.
Let f: X –> Y be an invertible function. Show that f has unique inverse.
Hint – suppose g1 and g2 are two inverses of f. Then for all y∈Y, fog1(y)=Iy(y)=fog2(y).Use one-one ness of f.
Solution:
If f is invertible gof (x) = Ix and fog (y) = Iy
∴ f is one-one and onto.
Let there be two inverse g1 and g2
fog1 (y) = Iy, fog2 (y) = Iy
Iy being unique for a given function f
=> g1 (y) = g2 (y)
f is one-one and onto
f has a unique inverse.

Ex 1.3 Class 12 Maths Question 11.
Consider f: {1,2,3} –> {a, b, c} given by f (1) = a, f (2)=b and f (3)=c. Find f-1 and show that (f-1)f-1=f.
Solution:
f: {1,2, 3,} –> {a,b,c} so that f(1) = a, f(2) = b, f(3) = c
Now let X = {1,2,3}, Y = {a,b,c}
∴ f: X –> Y
∴ f-1: Y –> X such that f-1 (a)= 1, f-1(b) = 2; f-1(c) = 3
Inverse of this function may be written as
(f-1)-1 : X –> Y such that
(f-1)-1 (1) = a, (f-1)-1 (2) = b, (f-1)-1 (3) = c
We also have f: X –> Y such that
f(1) = a,f(2) = b,f(3) = c => (f-1)-1 = f

Ex 1.3 Class 12 Maths Question 12.
Let f: X –> Y be an invertible function. Show that the inverse of f-1 is f, i.e., (f-1)-1 = f.
Solution:
f: X —> Y is an invertible function
f is one-one and onto
=> g : Y –> X, where g is also one-one and onto such that
gof (x) = Ix and fog (y) = Iy => g = f-1
Now f-1 o (f-1)-1 = I
and fo[f-1o (f-1)-1] =fol
or (fof-1)-1 o (f-1)-1 = f
=> Io (f-1)-1 = f
=> (f-1)-1 = f

Ex 1.3 Class 12 Maths Question 13.
If f: R –> R be given by f(x) = \({ \left( 3-{ x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } } \), then fof (x) is
(a) \({ x }^{ \frac { 1 }{ 3 } } \)
(b) x³
(c) x
(d) (3 – x³)
Solution:
f: R-> R defined by f(x) = \({ \left( 3-{ x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } } \)
fof (x) = f[f(x)] = \({f{ \left( 3-{ x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } }} \)
= \({ \left[ 3-{ \left\{ { \left( 3-{ x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } } \right\} }^{ 3 } \right] }^{ \frac { 1 }{ 3 } } \)
= \({ \left[ 3-{ \left\{ { \left( 3-{ x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } } \right\} } \right] }\)
= \({ \left( { x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } }\)
= x

Ex 1.3 Class 12 Maths Question 14.
Let f: \(R-\left\{ -\frac { 4 }{ 3 } \right\} \rightarrow R\) be a function defined as f (x) = \(\frac { 4x }{ 3x+4 } \) . The inverse of f is the map g: Range f–> \(R-\left\{ -\frac { 4 }{ 3 } \right\} \rightarrow R\) given by
(a) \(g(y)=\frac { 3y }{ 3-4y } \)
(b) \(g(y)=\frac { 4y }{ 4-3y } \)
(c) \(g(y)=\frac { 4y }{ 3-4y } \)
(d) \(g(y)=\frac { 3y }{ 4-3y } \)
Solution:
(b)

We hope the NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 help you. If you have any query regarding NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers
  • The Summer Of The Beautiful White Horse Answers
  • Job Application Letter class 12 Samples
  • Science Lab Manual Class 9
  • Letter to The Editor Class 12 Samples
  • Unseen Passage For Class 6 Answers
  • NCERT Solutions for Class 12 Hindi Core
  • Invitation and Replies Class 12 Examples
  • Advertisement Writing Class 11 Examples
  • Lab Manual Class 10 Science

Recent Posts

  • Understanding Diversity Question Answer Class 6 Social Science Civics Chapter 1 NCERT Solutions
  • Our Changing Earth Question Answer Class 7 Social Science Geography Chapter 3 NCERT Solutions
  • Inside Our Earth Question Answer Class 7 Social Science Geography Chapter 2 NCERT Solutions
  • Rulers and Buildings Question Answer Class 7 Social Science History Chapter 5 NCERT Solutions
  • On Equality Question Answer Class 7 Social Science Civics Chapter 1 NCERT Solutions
  • Role of the Government in Health Question Answer Class 7 Social Science Civics Chapter 2 NCERT Solutions
  • Vital Villages, Thriving Towns Question Answer Class 6 Social Science History Chapter 9 NCERT Solutions
  • New Empires and Kingdoms Question Answer Class 6 Social Science History Chapter 11 NCERT Solutions
  • The Delhi Sultans Question Answer Class 7 Social Science History Chapter 3 NCERT Solutions
  • The Mughal Empire Question Answer Class 7 Social Science History Chapter 4 NCERT Solutions
  • India: Climate Vegetation and Wildlife Question Answer Class 6 Social Science Geography Chapter 8 NCERT Solutions
  • Traders, Kings and Pilgrims Question Answer Class 6 Social Science History Chapter 10 NCERT Solutions
  • Environment Question Answer Class 7 Social Science Geography Chapter 1 NCERT Solutions
  • Understanding Advertising Question Answer Class 7 Social Science Civics Chapter 7 NCERT Solutions
  • The Making of Regional Cultures Question Answer Class 7 Social Science History Chapter 9 NCERT Solutions

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions