• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6

NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 are part of NCERT Solutions for Class 12 Maths. Here we have given NCERT Solutions for Class 12 Maths 4 Determinants Ex 4.6.

  • Determinants Class 12 Ex 4.1
  • Determinants Class 12 Ex 4.2
  • Determinants Class 12 Ex 4.3
  • Determinants Class 12 Ex 4.4
  • Determinants Class 12 Ex 4.5
Board CBSE
Textbook NCERT
Class Class 12
Subject Maths
Chapter Chapter 4
Chapter Name Determinants
Exercise Ex 4.6
Number of Questions Solved 16
Category NCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6

Examine the consistency of the system of equations in Questions 1 to 6:

Ex 4.6 Class 12 Maths Question 1.
x + 2y = 2
2x + 3y = 3
Solution:
x + 2y = 2,
2x + 3y = 3
=> \(\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}\left[ \begin{matrix} x \\ y \end{matrix} \right] =\left[ \begin{matrix} 2 \\ 3 \end{matrix} \right] \)
=> AX = B
Now |A| = \(\begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix}\)
= 3 – 4
= – 1 ≠ 0.
Hence, equations are consistent.

Ex 4.6 Class 12 Maths Question 2.
2x – y = 5
x + y = 4
Solution:
2x – y = 5,
x + y = 4
=> \(\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}\left[ \begin{matrix} x \\ y \end{matrix} \right] =\left[ \begin{matrix} 5 \\ 4 \end{matrix} \right] \)
=> AX = B
Now |A| = \(\begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix}\)
= 2 + 1
= 3 ≠ 0.
Hence, equations are consistent.

Ex 4.6 Class 12 Maths Question 3.
x + 3y = 5,
2x + 6y = 8
Solution:
x + 3y = 5,
2x + 6y = 8
=> \(\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}\left[ \begin{matrix} x \\ y \end{matrix} \right] =\left[ \begin{matrix} 5 \\ 8 \end{matrix} \right] \)
=> AX = B
Now |A| = \(\begin{vmatrix} 1 & 3 \\ 2 & 6 \end{vmatrix}\)
= 6 – 6
= 0.
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q3.1
Hence, equations are consistent with no solution

Ex 4.6 Class 12 Maths Question 4.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Solution:
x + y + z = 1
2x + 3y + 2z = 2
x + y + z = \(\\ \frac { 4 }{ a } \)
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q4.1

Ex 4.6 Class 12 Maths Question 5.
3x – y – 2z = 2
2y – z = – 1
3x – 5y = 3
Solution:
\(\left[ \begin{matrix} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] =\left[ \begin{matrix} 2 \\ -1 \\ 3 \end{matrix} \right] \)
=> AX = B
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q5.1

Ex 4.6 Class 12 Maths Question 6.
5x – y + 4z = 5
2x + 3y + 5z = 2
5x – 2y + 6z = -1
Solution:
Given
5x – y + 4z = 5
2x + 3y + 5z = 2
5x – 2y + 6z = -1
\(\left[ \begin{matrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] =\left[ \begin{matrix} 5 \\ 2 \\ -1 \end{matrix} \right] \)
\(AX=B|A|=\left[ \begin{matrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{matrix} \right] \)
= 5(18 + 10)+1(12 – 25)+4(-4-15)
= 140-13-76
= 51 ≠ 0
Hence equations are consistent with a unique
solution.

Solve system of linear equations using matrix method in Questions 7 to 14:

Ex 4.6 Class 12 Maths Question 7.
5x + 2y = 4
7x + 3y = 5
Solution:
The given system of equations can be written as
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q7.1

Ex 4.6 Class 12 Maths Question 8.
2x – y = – 2
3x + 3y = 3
Solution:
The given system of equations can be written
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q8.1

Ex 4.6 Class 12 Maths Question 9.
4x – 3y = 3
3x – 5y = 7
Solution:
The given system of equations can be written as
\(\begin{bmatrix} 4 & -3 \\ 3 & -5 \end{bmatrix}\left[ \begin{matrix} x \\ y \end{matrix} \right] =\left[ \begin{matrix} 3 \\ 7 \end{matrix} \right] i.e,,AX=B\)
where \(A=\begin{bmatrix} 4 & -3 \\ 3 & -5 \end{bmatrix}\)
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q9.1

Ex 4.6 Class 12 Maths Question 10.
5x + 2y = 3
3x + 2y = 5
Solution:
The given system of equations can be written as
\(\begin{bmatrix} 5 & 2 \\ 3 & 2 \end{bmatrix}\left[ \begin{matrix} x \\ y \end{matrix} \right] =\left[ \begin{matrix} 3 \\ 5 \end{matrix} \right] i.e,,AX=B\)
where \(A=\begin{bmatrix} 5 & 2 \\ 3 & 2 \end{bmatrix}\)
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q10.1

Ex 4.6 Class 12 Maths Question 11.
2x + y + z = 1,
x – 2y – z = 3/2
3y – 5z = 9
Solution:
The given system of equations are
2x + y + z = 1,
x – 2y – z = 3/2,
3y – 5z = 9
We know AX = B => X = A-1B
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q11.1

Ex 4.6 Class 12 Maths Question 12.
x – y + z = 4
2x + y – 3z = 0
x + y + z = 2.
Solution:
The given system of equations can be written
\(\left[ \begin{matrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] =\left[ \begin{matrix} 4 \\ 0 \\ 2 \end{matrix} \right] i.e,,AX=B\)
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q12.1

Ex 4.6 Class 12 Maths Question 13.
2x + 3y + 3z = 5
x – 2y + z = – 4
3x – y – 2z = 3
Solution:
The given system of equations can be written as:
\(\left[ \begin{matrix} 2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2 \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] =\left[ \begin{matrix} 5 \\ -4 \\ 3 \end{matrix} \right] i.e,,AX=B \)
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q13.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q13.2

Ex 4.6 Class 12 Maths Question 14.
x – y + 2z = 7
3x + 4y – 5z = – 5
2x – y + 3z = 12.
Solution:
The given system of equations can be written
\(\left[ \begin{matrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] =\left[ \begin{matrix} 7 \\ -5 \\ 12 \end{matrix} \right] i.e,,AX=B \)
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q14.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q14.2

Ex 4.6 Class 12 Maths Question 15.
If A = \(\left[ \begin{matrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{matrix} \right] \) Find A-1. Using A-1. Solve the following system of linear equations 2x – 3y + 5z = 11,3x + 2y – 4z = – 5, x + y – 2z = – 3
Solution:
We have AX = B
where \(A=\left[ \begin{matrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{matrix} \right] ,X=\left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] \)
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q15.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q15.2

Ex 4.6 Class 12 Maths Question 16.
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs. 69. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs. 90. The cost of 6 kg onion, 2 kg wheat and 3 kg rice is Rs. 70. Find the cost of each item per kg by matrix method
Solution:
Let cost of 1 kg onion = Rs x
and cost of 1 kg wheat = Rs y
and cost of 1 kg rice = Rs z
4x+3y+2z=60
2x+4y+6z=90
6x+2y+3z=70
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q16.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q16.2

We hope the NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 help you. If you have any query regarding NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • Wordfeud Cheat | Game Rules, Interesting Facts, Help, Tricks to win Wordfeud in English
  • ML Aggarwal Class 6 Solutions for ICSE Maths Chapter 7 Decimals Objective Type Questions
  • Multiplication-Decimal Numbers
  • Division-Decimal Numbers
  • Addition and Subtraction-Decimal Numbers
  • What is 368,492 rounded to the nearest ten-thousands?
  • NCERT Exemplar Class 6 Maths Chapter 4 Fractions and Decimals Solutions
  • Whole Numbers
  • Andhra Pradesh SSC Class 10 Solutions For Maths – Statistics
  • CBSE Revision Notes for Class 10 English Footprints Without Feet Chapter 7 The Necklace
  • Real Numbers Class 10 Maths CBSE Important Questions with Solutions
  • Lowest common Multiple
  • Factorization
  • ML Aggarwal Class 6 Solutions for ICSE Maths Chapter 4 Playing with Numbers Ex 4.5
  • Polynomials Class 10 Maths CBSE Important Questions with Solutions

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
cbse ncert
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions