• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

Rational Numbers

Contents

  • 1 Definition of Rational Numbers:
    • 1.1 Properties of Rational Numbers:
    • 1.2 Comparison of Rational Numbers:

Definition of Rational Numbers:

A rational number is any number that can be expressed as the quotient or fraction \(\frac{p}{q}\) of two integers, with the denominator q not equal to zero.
In short, rational number represents a ratio of two integers.

rational numbers

Example:
3.5 is a rational number because 3.5 = \(\frac{7}{2}\) (it can be written as a fraction)
\(\frac{7}{0}\) is not a rational number as the denominator can’t be 0.

Since q may be equal to 1, every integer is a rational number.
Every Natural Number n can be written as \(\frac{n}{1}\), which is a rational number, but a rational number such as \(\frac{1}{n}\) need not be a natural number.

Notation:
The set of all rational numbers is usually denoted by Q.

Relationship between different types of numbers:

Natural numbers includes set of elements like N = {1, 2, 3, 4,….} and Whole numbers are W = {0, 1, 2, 3, 4,….}.
Combining —1, —2, —3, —4, —5, … etc with whole numbers we get a set of numbers called integers Z = {…, -2, -1, 0, 1, 2,….}
Fractional numbers include numbers in the form of \(\frac{p}{q}\) where q is not equal to 0.
All these numbers can be related as follows:

relationship between numbers

Rational numbers includes natural numbers, whole numbers, integers and fractions. They are denoted by Q.

Every Natural number is a rational number but a rational number need not be a natural number.

Zero is a rational number.

Every fraction is a rational number but a rational number need not be fraction.

Every Integer is a rational number but a rational number need not be integer.

In general, there are two types of rational numbers:
1) Positive Rationals
2) Negative Rationals

Positive Rationals:
A rational number is said to be positive if its numerator and denominator are either both positive (+ve) or both negative (-ve).
Example: \(\frac{11}{3}\) and \(\frac{-17}{-6}\) are both positive rationals.

Negative Rationals:
A rational number is said to be negative if its numerator and denominator are of opposite signs.
Example: \(\frac{-7}{3}\) and \(\frac{5}{-2}\) are both negative rationals.

positive and negative rational numbers

Properties of Rational Numbers:

Property 1:
If \(\frac{a}{b}\) is a rational number and m is a nonzero integer then \(\frac{a}{b}\) =\(\frac{(a X m)}{(b X m)}\)
Example: \(\frac{-19}{4}\) is a rational number and \(\frac{-19}{4}\) can also be written as,

\(\frac{(-19) x 2}{4 x 2}\) = \(\frac{(-19) x 3}{4 x 3}\) = \(\frac{(-19) x 4}{4 x 4}\) = ……

That implies\(\frac{-19}{4}\) = \(\frac{-38}{8}\) = \(\frac{-57}{12}\) = \(\frac{-76}{16}\) = …..
Such rational numbers are called Equivalent rational numbers.

Property 2:
If \(\frac{a}{b}\) is a rational number and m is a common divisor of a and b then \(\frac{a}{b}\) = a/m/b/m
Example:\(\frac{-21}{14}\) is a rational number and \(\frac{-21}{14}\) can also be written as,
(-21)/7/14/7 = \(\frac{-3}{2}\)

A rational number \(\frac{a}{b}\) is said to be in standard form if a and b are integers having no common divisor other than 1 and b is positive (or) if rational number is in its lowest terms.

To express a given rational number in standard form:
Step 1) Make the denominator of the given rational number positive.
Step 2) Divide both the numerator and denominator by their HCF.

Example:
Express \(\frac{72}{-40}\) in standard form.

Solution: \(\frac{72}{-40}\) = \(\frac{72 x (-1)}{(-40) x (-1)}\) = \(\frac{-72}{40}\)
The greatest common divisor of 72 and 40 is 8.
Therefore, \(\frac{-72}{40}\) = -72/8/40/8 = \(\frac{-9}{5}\)
Hence, \(\frac{-9}{5}\) is the standard form as both -9 and 5 have no other common divisors other than 1.

Property 3:
Let \(\frac{a}{b}\) and \(\frac{c}{d}\) be two rational numbers. Then, \(\frac{a}{b}\) = \(\frac{c}{d}\) <=> (a x d) = (b x c)
Example: \(\frac{-3}{2}\) = \(\frac{-6}{4}\)
(-3 x 4) = -12 and (2 x -6) = -12
<=> (-3 x 4) = (2 x -6)

Every positive rational number is greater than 0.
Every negative rational number is less than 0.

Comparison of Rational Numbers:

There are two methods for comparing rational numbers. They are:

Method 1:
Step 1) Express each rational number with a positive denominator.
Step 2) Find the LCM of the positive denominators.
Step 3) Express each of the given rational numbers with this LCM as common denominator.
Step 4) Then number having greater numerator is greater.

Example: Compare \(\frac{-7}{5}\) and \(\frac{5}{-2}\).
Solution: Step 1: By expressing the rationals in standard form we have,
\(\frac{-7}{5}\) = \(\frac{-7}{5}\) and \(\frac{5}{-2}\) = \(\frac{-5}{2}\)
Step 2: LCM of 5 and 2 is 5 x 2 = 10. (Since, both 2 and 5 are primes so their LCM is their product)
Step 3: By expressing each rational number with LCM as denominator we have,
\(\frac{-7}{5}\) = \(\frac{-7 x 2}{5 x 2}\) = \(\frac{-14}{10}\)

\(\frac{-5}{2}\) = \(\frac{-5 x 5}{2 x 5}\) = \(\frac{-25}{10}\)
Step 4: Comparing numerators of both rationals we have,
-14 > -25
Therefore, \(\frac{-7}{5}\) > \(\frac{5}{-2}\).

Method 2:
If a and b are integers and c and d are positive integers, then
\(\frac{a}{c}\) > \(\frac{b}{d}\), if and only if ad > bc.

\(\frac{a}{c}\) < \(\frac{b}{d}\), if and only if ad < bc.

\(\frac{a}{c}\) = \(\frac{b}{d}\), if and only if ad = bc.

Example: Compare \(\frac{17}{-7}\) and \(\frac{-11}{13}\).
Solution: By expressing the rationals in standard form we have,
\(\frac{17}{-7}\) = \(\frac{-17}{7}\) and \(\frac{-11}{13}\) = \(\frac{-11}{13}\)
On cross multiplication -17 x 13 = -221 and 7 x -11 = -77
-221 < -77
Therefore, \(\frac{17}{-7}\) < \(\frac{-11}{13}\).

Arranging rational numbers:

Rational numbers can be arranged in ascending or descending order by comparing the rational numbers by applying any one of the method explained above.
For example, arrange \(\frac{-3}{2}\), \(\frac{5}{-9}\), \(\frac{-15}{7}\) in ascending order.
Writing each rational number with a positive denominator, we have \(\frac{-3}{2}\), \(\frac{-5}{9}\), \(\frac{-15}{7}\).
LCM of 2, 9 and 7 is 126
By expressing each rational number with common denominator we have, \(\frac{-3}{2}\) = \(\frac{-3 x 63}{2 x 63}\) = \(\frac{-189}{126}\)

\(\frac{-5}{9}\) = \(\frac{-5 x 14}{9 x 14}\) = \(\frac{-70}{126}\)

\(\frac{-15}{7}\) = \(\frac{-15 x 18}{7 x 18}\) = \(\frac{-270}{126}\)

Since, -270 < -189 < -70 therefore, \(\frac{-15}{7}\) < \(\frac{-3}{2}\) < \(\frac{-5}{9}\)

Hence, the rational numbers in ascending order are \(\frac{-15}{7}\), \(\frac{-3}{2}\), \(\frac{-5}{9}\)

Example2: Arrange \(\frac{-7}{5}\), \(\frac{11}{-9}\), \(\frac{-13}{5}\) in descending order by cross multiplication method.

On cross multiplication of \(\frac{-7}{5}\), \(\frac{11}{-9}\) we have,

-7 x -9 = 63 and 5 x 11 = 55.
Since, 63 > 55 (ad > bc) therefore, \(\frac{-7}{5}\) > \(\frac{11}{-9}\).

Similarly, on cross multiplication of \(\frac{-11}{9}\), \(\frac{-13}{5}\) we have,

-11 x 5 = -55 and 9 x -13 = -117.
Since, -55 > -117 (ad > bc) therefore, \(\frac{-11}{9}\) > \(\frac{-13}{5}\).

By comparing \(\frac{-7}{5}\), \(\frac{-13}{5}\) we have,

\(\frac{-7}{5}\) > \(\frac{-13}{5}\)

From the above results we have,
\(\frac{-7}{5}\) > \(\frac{-11}{9}\) > \(\frac{-13}{5}\)

Hence, the rational numbers in descending order are \(\frac{-7}{5}\), \(\frac{-11}{9}\), \(\frac{-13}{5}\)

 

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • CBSE Sample Papers for Class 12 History Paper 1
  • ML Aggarwal Class 7 Solutions for ICSE Maths Chapter 16 Perimeter and Area Ex 16.3
  • Article Writing Class 11 Format, Topics, Examples, Samples
  • Paragraph on Madhur Vani in Hindi | मधुर वाणी पर अनुच्छेद लेखन
  • Coordinate Geometry Class 10 Maths CBSE Important Questions With Solutions
  • Paragraph on Morning Walk in Hindi | प्रात: काल भ्रमण पर अनुच्छेद लेखन
  • Sambandh Bodhak in Hindi | संबंधबोधक (Preposition) की परिभाषा एवं उनके भेद और उदाहरण (हिन्दी व्याकरण)
  • NCERT Solutions for Class 7 Maths Chapter 12 Algebraic Expressions InText Questions
  • CBSE Revision Notes for Class 10 English First Flight Chapter 8 Mijbil the Otter
  • Maharashtra Board Class 10 Solutions for Marathi कुमारभारती – कथालेखन
  • NCERT Class 10 Science Lab Manual CO2 is Released During Respiration
  • NCERT Solutions for Class 12 Hindi Core – कार्यालयी हिंदी और रचनात्मक लेखन – कार्यालयी पत्र
  • NCERT Solutions for Class 7 Maths Chapter 13 Exponents and Powers InText Questions
  • NCERT Class 10 Science Lab Manual Dicot Seed
  • NCERT Exemplar Problems Class 7 Maths – Exponents and Powers

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions