• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

  • NCERT Solutions
    • NCERT Solutions for Class 12 English Flamingo and Vistas
    • NCERT Solutions for Class 11 English
    • NCERT Solutions for Class 11 Hindi
    • NCERT Solutions for Class 12 Hindi
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

Water Absorption in Soil – Introduction, Experiment and Percolation of Water

Contents

Spectroscopy is an important technique used in Chemistry Topics to analyze the interaction of matter with electromagnetic radiation.

Derive the Percentage of Water Absorbed by Soil and How does Soil Allows Water to Percolate

Though soil usually contains some water (or moisture), it can still absorb (or soak up) a lot of water. Absorption is called ‘sokhna’ in Hindi. The absorption of water by soil will become clear from the following activity.

Activity 5

Let us take two test-tubes and fill equal amounts of water ¡n them. Pour water from one test-tube on the cemented floor in the house. We will find that the water poured on the cemented floor flows down, it is not absorbed by the cemented floor. Let us now pour water from the second test-tube on the soil kept in a flower pot. We will see that the soil absorbs the water quite rapidly.

Now, cemented floor does not absorb water because it is not porous. The soil absorbs water because it is porous (having tiny pores in it). All types of soils, however, do not absorb water to the same extent. Some soils absorb more water whereas other soils absorb less water.

To Find the Percentage of Water Absorbed by a Soil

We will now describe an activity to find out the percentage of water absorbed by a given sample of soil. By saying the percentage of water absorbed by a soil we mean the mass of water absorbed by 100 grams of a soil. Let us describe the activity now.

(i) Take a filter paper, fold it properly and fix it in a plastic funnel. Keep the funnel (having filter paper fixed in it) in a beaker as shown in Figure.
Soil Can Absorb Water 1
(ii) Take some dry powdered soil and weigh it on a balance. This will give us the mass of soil taken. Pour this weighed soil into the filter paper fixed in the funnel (see Figure).

(iii) Fill a measuring cylinder with water and note the initial volume of water taken in the measuring cylinder. Take out water from the measuring cylinder with the help of a dropper and pour it drop by drop on the soil kept in the funnel. All the water should not fall at one spot on the soil.

(iv) Keep pouring water in the soil kept on filter paper till it just starts dripping from the lower end of the funnel (see Figure). Then stop pouring more water on soil. The dripping of water from funnel tells us that the soil taken on the filter paper has absorbed the maximum amount of water. Note the final volume of water left unused in the measuring cylinder.

(v) Subtract the volume of water left in the measuring cylinder from the initial volume of water taken in the measuring cylinder. This difference will give us the volume of water absorbed by the soil taken on filter paper in the funnel.

By using the above observations, the percentage of water absorbed by the soil can be calculated as follows.
Suppose : Mass of soil taken = m grams
Initial volume of water (taken in measuring cylinder) = v1 mL
Final volume of water (left in measuring cylinder) = v2 mL
So, Volume of water absorbed (by soil) = (v1 – v2) mL
Now, it is known that 1 mL volume of water has a mass equal to 1 gram. So, we can also say that
Mass of water absorbed (by soil) = (v1 – v2) grams
Percentage of water absorbed = \(\frac{\text { Mass of water absorbed }}{\text { Mass of soil taken }}\) × 100
Percentage of water absorbed = \(\frac{\left(v_1-v_2\right)}{m}\) × 100
where v1 = Initial volume of water (taken in measuring cylinder)
v2 = Final volume of water (left in measuring cylinder)
and m = mass of soil taken
The calculation of percentage of water absorbed by a given sample of soil will become clear from the following example.

Example Problem.
100 mL of water was taken in a measuring cylinder. This water was added dropwise to 50 g of dry soil kept on filter paper in a funnel. When the water just started dripping from the soil in the funnel, the amount of water left in the measuring cylinder was found to be 80 mL. Calculate the percentage of yrater absorbed by this soil.
Solution:
Here, Initial volume of water v1 =100 mL
Final volume of water, v2 = 80 mL
And, Mass of soil taken, m = 50 g
Now, we know the formula :
Percentage of water absorbed = \(\frac{\left(v_1-v_2\right)}{m}\) × 100
= \(\frac{(100-80)}{50}\) × 100
= \(\frac{20}{50}\) × 100
= 40 per cent

Soil Allows Water To Percolate

Soil is a porous solid substance (having tiny pores in it). When water is poured over soil, then some of it gets absorbed in the soil and the rest passes down the soil. The process in which water passes down slowly through the soil is called percolation of water.

Percolation is called ‘risna’ in Hindi. Though water can percolate through all types of soils but the rate of percolation of water through different types of soils is different. The rate of percolation of water tells us how fast water passes down the soil. Please note that whether we call ‘rate of percolation of water’ or ‘percolation rate of water’, it means the same thing.

To Measure the Percolation Rate of Water in Soil

The percolation rate of water in a soil is the volume of water in millilitres which passes down the soil per minute. The percolation rate of water in a soil can be measured as follows.

Activity 7

(i) Take a 20 cm long PVC pipe having a diameter of about 5 cm. At the place where percolation rate of water is to be measured, dig the soil to a depth of about 2 cm in the ground. Place one end of the pipe in the dug up ground and hold it vertically (see Figure). Fill a measuring cylinder with water. Note the volume of water taken in the measuring cylinder.
Soil Can Absorb Water 2
(ii) Pour the water taken in the measuring cylinder in the pipe slowly from the top end (as shown in Figure). Note the time when you just start pouring water in the pipe.

(iii) After some time, all the water poured in the pipe will percolate down through the soil, leaving the pipe empty. Note the time again when all the water has percolated down through the soil and the pipe becomes empty.

(iv) The difference in the two ‘time readings’ will give us the time taken by the water taken, in the measuring cylinder to percolate into the soil.

The percolation rate of water in the soil can be calculated by using the formula :
Percolation rate of water in soil = \(\frac{\text { Volume of water percolated in soil }}{\text { Time taken for percolation }}\)

The volume of water percolated in soil is measured in ‘millilitres’ (mL) and the time taken is measured in minutes (min). So, the percolation rate of water is expressed in the unit of ‘millilitres per minute’ which is written in short form as mL/min. The calculation of percolation rate of water in soil will become clear from the following example.

Example Problem.
200 mL of water takes 40 minutes to percolate completely in a particular soil. Calculate the percolation rate of water in this soil.
Solution:
Here, Volume of water percolated = 200 mL
And, Time taken for percolation = 40 min
Now, we know the formula :
Percolation rate = \(\frac{\text { Volume of water percolated in soil }}{\text { Time taken for percolation }}\)
Percolation rate = \(\frac{200 \mathrm{~mL}}{40 \mathrm{~min}}\)
= 5 mL/min
Thus, the percolation rate of water in this soil is 5 millilitres per minute. By saying that the percolation rate of water in this soil is 5 millilitres per minute, we mean that 5 millilitres of water passes down this soil every one minute.

Sandy soil is quite loose, so the percolation rate of water is highest in sandy soil. On the other hand, clayey soil is very compact. So, the percolation rate of water is lowest in the clayey soil. It has been found that 8 to 10 days after the rains, the level of water in a well rises.

The sandy soil (having the highest percolation rate) allows the rainwater to reach a well faster and in greater amount. Also, since sandy soil has the highest percolation rate, it retains the least rainwater in it. On the other hand, the clayey soil (having the lowest percolation rate) retains the highest amount of rainwater in it.

In rainwater harvesting, more rainwater is made to percolate into the soil by digging ‘percolation pits’. We have already studied rainwater harvesting in Class VI. Paddy (rice crop) is planted in standing water in the fields. Paddy also requires a lot of irrigation water afterwards. The soil with a low percolation rate of water would be the most suitable for growing paddy (rice crop) because it will allow the water to remain in the fields for a much longer time.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers
  • The Summer Of The Beautiful White Horse Answers
  • Job Application Letter class 12 Samples
  • Science Lab Manual Class 9
  • Letter to The Editor Class 12 Samples
  • Unseen Passage For Class 6 Answers
  • NCERT Solutions for Class 12 Hindi Core
  • Invitation and Replies Class 12 Examples
  • Advertisement Writing Class 11 Examples
  • Lab Manual Class 10 Science

Recent Posts

  • Understanding Diversity Question Answer Class 6 Social Science Civics Chapter 1 NCERT Solutions
  • Our Changing Earth Question Answer Class 7 Social Science Geography Chapter 3 NCERT Solutions
  • Inside Our Earth Question Answer Class 7 Social Science Geography Chapter 2 NCERT Solutions
  • Rulers and Buildings Question Answer Class 7 Social Science History Chapter 5 NCERT Solutions
  • On Equality Question Answer Class 7 Social Science Civics Chapter 1 NCERT Solutions
  • Role of the Government in Health Question Answer Class 7 Social Science Civics Chapter 2 NCERT Solutions
  • Vital Villages, Thriving Towns Question Answer Class 6 Social Science History Chapter 9 NCERT Solutions
  • New Empires and Kingdoms Question Answer Class 6 Social Science History Chapter 11 NCERT Solutions
  • The Delhi Sultans Question Answer Class 7 Social Science History Chapter 3 NCERT Solutions
  • The Mughal Empire Question Answer Class 7 Social Science History Chapter 4 NCERT Solutions
  • India: Climate Vegetation and Wildlife Question Answer Class 6 Social Science Geography Chapter 8 NCERT Solutions
  • Traders, Kings and Pilgrims Question Answer Class 6 Social Science History Chapter 10 NCERT Solutions
  • Environment Question Answer Class 7 Social Science Geography Chapter 1 NCERT Solutions
  • Understanding Advertising Question Answer Class 7 Social Science Civics Chapter 7 NCERT Solutions
  • The Making of Regional Cultures Question Answer Class 7 Social Science History Chapter 9 NCERT Solutions

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions