## Solve sin x − cos x = 0?

Answer:

\(x=\frac{\pi}{4}+n \pi\)

Explanation:

We have:

Which we can rearrange as follows:

\(∴ \sin x=\cos x\)

\(∴ \frac{\sin x}{\cos x}=1\)

\(∴ \tan x=1\)

\(\#:: \mathrm{x}=(\arctan 1)+\mathrm{npi} \backslash \backslash \# \text { where } n \in \mathbb{Z}\)

\(∴ x=\frac{\pi}{4}+n \pi\)