• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

  • NCERT Solutions
    • NCERT Solutions for Class 12 English Flamingo and Vistas
    • NCERT Solutions for Class 11 English
    • NCERT Solutions for Class 11 Hindi
    • NCERT Solutions for Class 12 Hindi
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

Andhra Pradesh SSC Class 10 Solutions For Maths – Progressions

Contents

Andhra Pradesh SSC Class 10 Solutions For Maths – Progressions (English Medium) 

These Solutions are part of AP SSC Class 10 Solutions for Maths. In this article, we have provided Andhra Pradesh SSC Class 10 Solutions For Maths Chapter 6 Progressions

Exercise 6.1:

Question 1:
In which of tine following situations, does the list of numbers involved make an arithmetic progression, and why?

  1. The taxi fare after each km when the fare is 20 for the first km and rises by  8 for each additional km.
  2. The amount of air present in a cylinder when a vacuum pump removes 1/4 of tine air remaining in the cylinder at a time.
  3. The cost of digging a well, after every metre of digging, when it costs 150 for the first metre and rises by’ 50 for each subsequent metre.
  4. The amount of money in the account every year, when ‘10000 is deposited at compound interest at 8 % per annum.

Solution :

  1. Arithmetic progression. Since rise in the taxi fair for each additional kilometer is same.
  2. Not Arithmetic progression. Since the amount of air removed using vacuum pump is not same always, it’s in the ratio of the air remaining in the cylinder.
  3. Arithmetic progression. Since rise in the cost of digging the well fair for each subsequent metre is same.
  4. Not Arithmetic progression. The amount of money in the account every year is increasing by applying compound interest on the deposit. In compound interest the interest gets added to the principle deposit for the next cycle, so every year the amount of money in the account is not same.

AP SSC 10th Class Textbook Solutions

Question 2:
Write first four terms of the AP, when the first term a and the common difference d are given as follows:

  1.  a =10, d= 10
  2.  a = -2, d=0
  3.  a = 4, d = – 3
  4.  a = – 1, d = 1/2
  5.  a = – 1.25, d = – 0.25

Solution :

  1. The nth term of an AP having first term a and common difference d is given by
    an = a + (n – 1)d
    a1 = 10 + (1 – 1)10 = 10
    a2 = 10 + (2 – 1)10 = 20
    a3 = 10 + (3 – 1)10 = 30
    a4 = 10 + (4 – 1)10 = 40
  2. The nth term of an AP having first term a and common difference d is given by
    an = a + (n -1)d
    a1 = -2 + (1 – 1)0 = -2
    a2 = -2 + (2 – 1)0 = -2
    a3 = -2 + (3 – 1)0 = -2
    a4 = -2 + (4 – 1)0 = -2
  3. The nth term of an AP having first term a and common difference d is given by
    an = a + (n – 1)d
    a1 = 4 + (1 – 1)(-3) = 4
    a2 = 4 + (2 – 1)(-3) = 1
    a3 = 4 + (3 – 1)(-3) = -2
    a4 = 4 + (4 – 1)( -3) = -5
  4. The nth term of an AP having first term a and common difference d is given by
    an = a + (n – 1)d
    Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.1-2
  5. The nth term of an AP having first term a and common difference d is given by
    an = a + (n – 1)d
    a1 = -1.25 + (1 – 1)(-0.25) = -1.25
    a2 = -1 + (2 – 1)(-0.25) = -1.5
    a3 = -1 + (3 – 1)(-0.25) = -1.75
    a4 = -1 + (4 – 1)(-0.25) = -2

Question 3:
For the following APs, write the first term and the common difference:

  1. 3, 1,-1,-3,…
  2.  – 5, – 1, 3, 7,…
  3. \(\frac { 1 }{ 3 } ,\frac { 5 }{ 3 } ,\frac { 9 }{ 3 } ,\frac { 13 }{ 3 },\)…….
  4. 0.6, 1.7, 2.8, 3.9,………..

Solution :
For an AP having the terms a1, a2, a3,…
The first term a is given by,
a = a1
The common difference d is given by,
d = ak+1 – ak
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.1-3

Question 4:
Which of the following are APs ? If they form an AP, find the common difference d and write three more terms.
andhra-pradesh-ssc-class-10-solutions-for-maths-progressions-ex-6.1-1
Solution :

  • We have,
    a2 – a1 = 4 – 2 = 2
    a3 – a2= 8 – 4 = 4
    As a2 – a1 ¹ a3 – a2, the given list of numbers do not form an AP.
  • We have,

Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.1-4-1

  • We have,
    a2 – a1 = -3.2 + 1.2 = -2
    a3 – a2 = -5.2 + 3.2 = -2
    i.e., the term ak+1 – ak remains same every time.
    So, the given list of numbers forms an AP with the common difference d = -2.
    The next three terms are -9.2, -11.2, -13.2.
  • We have,
    a2 – a1 = -6 + 10 = 4
    a3 – a2 = -2 + 6 = 4
    i.e., the term ak+1 – ak remains same every time.
    So, the given list of numbers forms an AP with the common difference d = 4.
    The next three terms are 6, 10, 14.
  • We have,

Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.1-4-2

  • We have,
    a2 – a1 = 0.22 – 0.2 = 0.02
    a3 – a2 = 0.222 – 0.22 = 0.002
    As a2 – a1 ¹ a3 – a2, the given list of numbers do not form an AP.
  • We have,

Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.1-4-3

  • We have,
    Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.1-4-4
  • We have a2 – a1 = 3 – 1 = 2
    a3 – a2 = 9 – 3 = 6
    As a2 – a1  ¹ a3 – a2, the given list of numbers do not form an AP.
  • We have a2 – a1 = 2a – a = a
    a3 – a2 = 3a – 2a = a
    i.e., the term ak+1 – ak remains same every time.
    So, the given list of numbers forms an AP with the common difference d = a.
    The next three terms are 5a, 6a, 7a.
  • We have a2 – a1 = a2 – a
    a3 – a2 = a3 – a2
    As a2 – a1 ¹ a3 – a2, the given list of numbers do not form an AP.
  • We have,
    Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.1-4-5
  • We have,
    Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.1-4-6

Exercise 6.2:

Question 1:
Fill in the blanks in the following table, given that a is the first term, d the common difference and an the nth term of the AP:
andhra-pradesh-ssc-class-10-solutions-for-maths-progressions-ex-6.2-1
andhra-pradesh-ssc-class-10-solutions-for-maths-progressions-ex-6.2-1-i
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.2-1
Therefore, the number of terms n of the given A.P. is 10.
v. Here , a = 3.5, d = 0 and n = 105
We have an = a + (n – 1)d
So, a105 = 3.5 + (105 – 1)(0) = 3.5 + 0 = 3.5.
Therefore, the nth term an of the given A.P. is 3.5.

Sr. No a d n an
1 7 3 8 28
2 -18 2 10 0
3 46 -3 18 -5
4 -18.9 2.5 10 3.6
5 3.5 0 105 3.5

 

Question 2:
Find the

  1. 30th term of the A.P. 10, 7, 4…….
  2. 11th term of the A.P. : \(-3,\frac { -1 }{ 2 } ,2,\)……..

Solution :
i. Here , a = 10, d = 7 – 10 = -3 and n = 30
We have an = a + (n – 1)d
So, a30 = 10 + (30 – 1)(-3) = 10 – 87 = -77.
Therefore, the 30th term of the given A.P. is -77.
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.2-2

Question 3:
Find the respective terms for the following APs.
andhra-pradesh-ssc-class-10-solutions-for-maths-progressions-ex-6.2-2
Solution :

  • Since the terms are in A.P., so,
    a3 – a2 = a2 – a1
    a3 – a2 – a2 + a1 = 0
    a3 – 2a2 + a1 = 0
    a3 + a1 = 2a2
    26 + 2 = 2a2
    28 = 2a2
    a2 = 14
  • Since the terms are in A.P., so,
    a4 – a3 = a3 – a2
    a4 – a3 – a3 + a2 = 0
    a4 – 2a3 + a2 = 0
    a4 + a2 = 2a3
    13 + 3 = 2a3
    16 = 2a3
    a3 = 8
    so, a2 – a1 = a3 – a2
     a2 – a1 – a3 + a2 = 0
    2a2 – a3 = a1
      26 – 8 = a1
    a1 = 18
  • a1 = a = 5
    Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.2-3
  • a1 = a = -4
    a6 = a + (n-1)d
    6 = a + (6-1)d
    6 = a + 5d
    6 = -4 + 5d
    10 = 5d
    d =2
    a2 = a + (n-1)d = -4+(2-1)2=-4+2=-2
    a3=a+(n-1)d=-4+(3-1)2=-4+4=0
    a4=a+(n-1)d=-4+(4-1)2=-4+6=2
    a5=a+(n-1)d=-4+(5-1)2=-4+8=4
  • a2=a1+(n-1)d
    38= a1+d
    a6=a1+(n-1)d
    -22= a1+5d
    a6– a2=4d
    -22-38=4d
    -60=4d
    d=-15
    a2=a1+d
    a1=a2-d
    a1=38+15
    a1=53=a
    a3=a+(n-1)d=53+(3-1) (-15) = 53-30=23
    a4=a+(n-1)d=53+(4-1) (-15) = 53-45=8
    a5=a+(n-1)d=53+(5-1) (-15) = 53-60=-7

Question 4:
Which term of the AP : 3, 8, 13, 18,……,is 78?
Solution :
Here, a=3, d=8-3=5, and if an=78, we have to find n.
As, an=a+(n-1)d
78=3+(n-1)5
78=3+5n-5
83=3+5n
80=5n
n = 16
Therefore, the 16th term of the given A.P. is 78.

Question 5:
Find the number of terms in each of the following APs :
(i) 7, 13, 19,… ,205
(ii) \(18,\quad 15\frac { 1 }{ 2 } ,13,\)……..,-47
Solution :
i. Here a=7, d=13-7=6 , and if an=205
As an=a+(n-1)d
205=7+(n-1)6
205=7+6n-6
205=1+6n
204=6n
n=34
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.2-5

Question 6:
Check whether, -150 is a term of the AP: 11,8,5,2…
Solution :
We have:
a2-a1=8-11=-3, a3-a2=5-8=-3
As (ak+1-ak) is the same for k=1, 2, etc, the given list of numbers is an A.P.
Now, for this A.P. we have a = 11 and d = -3.
Let the nth term of this AP be -150.

We know,
an=­a+(n-1)d
-150=11+(n-1)(-3)
-150=11-3n+3
-150=14-3n
-164=-3n
n=164 ⁄ 3
But n should be a positive integer.
Hence, -150 is not a term of the given list of numbers.

Question 7:
Find the 31st term of an AP whose 11th term is 38 and the 16th term is 73.
Solution :
We have,
a11=a+(11-1)d=a+10d=38 (1)
a16=a+(16-1)d=a+15d=73 (2)
Solving equation (1) and (2), we get
a= -32 and d=7
Hence, the 31st term will be,
a31=a+(n-1)d
=-32+(31-1)7
=-32+(30)7
=-32+210
=178
Therefore the 31st term of the A.P. is 178.

Question 8:
If the 3 rd and the 9th terms of an AP are 4 and – 8 respectively, which term of this AP is zero?
Solution :
a3=a+(n-1)d
4=a+(3-1)d
4=a+2d (1)
a9=a+(n-1)d
-8=a+(9-1)d
-8=a+8d (2)
Solving (1) and (2), we get
a = 8 and d=-2
We want to know if there is any n for which an=0.
an=­a+(n-1)d
0=8+(n-1)(-2)
0=10-2n
n=5

Question 9:
The 17th term of an AP exceeds its 10th term by 7. Find the common difference.
Solution :
Let the first term of the A.P. be ‘a’, 17th term be ‘a17‘,
10th term be ‘a10‘, and common difference be ‘d’.
a17=a+16d—–(1)
a10=a+9d——-(2)
Subtracting (2) from (1)
a17-a10=a+16d-(a+9d)
7=a+16d-a-9d
7=7d
d=1
Thus, the common difference of the given A.P. is 1.

Question 10:
Two APs have the same common difference. The difference between their 100th terms is 100, what is the difference between their 1000th terms?
Solution :
Let the first term of the AP1 be ‘a1’, 100th term be ‘a1100‘, and 1000th term be ‘a11000‘.
Let the first term of the AP2 be ‘a2’, 100th term be ‘a2100‘, 1000th term be ‘a21000‘,
Let the common difference be ‘d’, as it is same for both the APs.
a1100=a1+99d—–(1)
a2100=a2+99d—–(2)
Subtract (2) from (1)
a1100-a2100=a1+99d-a2-99d
a1100-a2100=a1-a2—–(3)
But,
a1100-a2100=100 ……..( Given)
Therefore,
a1-a2=100——(3)
Now,
a11000=a1+999d—–(4)
a21000=a2+999d—–(5)
Subtract (5) from (4)
a11000-a21000=a1+999d-a2-999d
a11000-a21000=a1-a2
But ,
a1-a2=100 ………..( from (3))
Therefore,
a11000-a21000=100
Thus the difference between the 1000thterm of both the APs is also 100, as proved above.

Question 11:
Flow many three-digit numbers are divisible by 7?
Solution :
Three digit numbers which are divisible by 7 are:
105, 112, ………..994
So, a=105, d=112-115=7, an=994
an=a+(n-1)d
994=105+(n-1)7
994=105+7n-7
994-98=7n
896=7n
n=128
There are 128 three digit numbers divisible by 7.

Question 12:
Flow many multiples of 4 lie between 10 and 250?
Solution :
The multiples of 4 which lie between 10 and 250 are,
12, 16, 20, 24, 28……….248
So, a=12, d=16-12=4 and an =248
an=a+(n-1)d
an=12+(n-1)4
248 =12+4n-4
248=8+4n
240=4n
n=6.

Question 13:
For what value of n, are the nth terms of two APs: 63, 65, 67,… and 3, 10, 17,… equal?
Solution :
For the first A.P., 63, 65, 67….
The first term a1=63 and da=65-63=2
an= a1+(n-1) da
For the second A.P., 3, 10, 17….
The first term b1=3 and db=10-3=7
bn= b1+(n-1) db
Let the nth term of A.P1 and A.P2 be equal.
an= bn
a1+(n-1) da= b1+(n-1) db
63+(n-1)2=3+(n-1)7
60=(n-1)5
n-1=12
n=13
So, the 13th term of A.P1 and A.P2 are equal.

Question 14:
Determine the AP whose third term is 16 and the 7th term exceeds the 5th term by 12.
Solution :
Let the first term of the A.P. be ‘a’ and the common difference be ‘d’.
The third term of the A.P. is 16.
a3= a+(3-1) d
16=a+2d…..(i)
The 7th term exceeds the 5th term by 12.
a7-a5=12
a+(7-1)d-[ a+(5-1)d]=12
a+6d-a-4d=12
2d=12
d=6
Substitute d=6 in equation (i)
16=a+2(6)
a=4
a1=a=4
a2=a+(n-1)d=4+(2-1) (6) =4+6=10
a3= 16
Hence the A.P. is 4, 10, 16,….

Question 15:
Find the 20th term from the end of the AP : 3, 8,13,…, 253.
Solution :
Let the first term of the A.P. be ‘a’ and the common difference be ‘d’.
a=3, d=8-3=5 and an=253
The nth term of the A.P. is given by,
an= a+(n-1) d
253= 3+(n-1)5
250=(n-1)5
n-1=50
n=51
The 20th term from the end of the A.P. is the 32th term from the top of the A.P., given by,
a31= a+(32-1) d
a31= 3+(32-1)5
a31=3+155
a31= 158

Question 16:
The sum of the 4 and 8 terms of an AP is 24 and the sum of the 6 and 10 terms is 44. Find the first three terms of the AP.
Solution :
Let the first term of the A.P. be ‘a’ and the common difference be ‘d’.
The sum of the 4th and 8th terms of the A.P. is 24,
a4 + a8 =24
a+(4-1)d+a+(8-1)d =24
2a+10d=24
a+5d=12…………(i)
The sum of the 6th and 10th term of the A.P. is 44,
a6 + a10 =44
a+(6-1)d+a+(10-1)d =44
2a+14d=44
a+7d=22…………(ii)
Subtracting equation (i) from (ii) we get
2d=10
d=5
Substituting d=5 in equation (i) we get
a+5(5)=12
a=-13
The first three terms of the A.P. are given by,
a1= a=-13
a2= -13+(2-1)5=-8
a3=-13+(3-1)5=-3

Question 17:
Subba Rao started work in 1995 at an annual salary’ of’ 5000 and received an increment of’ 200 each year. In which year did his salary reach 7000?
Solution :
Subba Rao started work in 1995 at an annual salary of Rs. 5000 and received an increment of Rs. 200 each year.
So the annual salary from 1995 onwards is
5000, 5200, 5400,……
Let the first term of the A.P. be ‘a1‘ and the common difference be ‘d’.
a1 = 5000, d = 200
To find the value of n for which an = 7000
The nth term of the A.P. is given by
an= a1+(n-1) d
7000= 5000+(n-1) 200
2000= (n-1) 200
n-1=10
n=11
In the year 2005, Subba Rao’s income reaches Rs. 7000.

Exercise 6.3:

Question 1:
Find the sum of the following APs:
(i) 2, 7, 12,..to 10 terms.
(ii) -37,-33,-29,…. to 12 terms
(iii) 6, 1.7, 2.8,…, to 100 terms.
(iv) \(\frac { 1 }{ 15 } ,\frac { 1 }{ 12 } ,\frac { 1 }{ 10 } ,\)….,to 11 terms
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-1

Question 2:
Find the sums given below:
andhra-pradesh-ssc-class-10-solutions-for-maths-progressions-ex-6.3-1
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-1

Question 3:
In an AP:

Question 3(i):
given a = 5, d=3, a =50, find n and Sn.
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-3(i)

Question 3(ii):
given a = 7, a13= 35, find d and S13.
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-3(ii)

Question 3(iii):
given a12 = 37, d= 3, find a and S12.
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-3(iii)

Question 3(iv):
given a3 = 15, S10 = 125, find d and a10 .
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-3(iv)

Question 3(v):
given a = 2, d = 8, Sn = 90, find n and an.
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-3(v)

Question 3(vi):
given an = 4, d = 2, Sn = -14, find n and
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-3(vi)

Question 3(vii):
given l = 28, S = 144, and there are total 9 terms. Find a
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-3(vii)

Question 4:
The first and the last terms of an AP are 17 and 350 respectively. If the common difference is 9, how many terms are there and what is their sum?
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-4

Question 5:
Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-5

Question 6:
If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289, find the sum of first n
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-6

Question 7:
Show that a1, a2,……..,an,… form an AP where an is defined as below :
(i) an = 3 + 4n
(ii) an = 9 – 5n
Also find the sum of the first 15 terms in each case.
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-7

Question 8:
If the sum of the first n terms of an AP is 4n – n2, what is the first term (remember the first term is S1)? What is the sum of first two terms? What is the second term? Similarly, find the 3rd, the 10th and the nth terms.
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-8

Question 9:
Find the sum of the first 40 positive integers divisible by 6.
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-9

Question 10:
A sum of’ 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is’ 20 less than its preceding prize, find the value of each of the prizes.
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-10

Question 11:
In a school, students thought of planting trees in and around the school to reduce air pollution. It was decided that the number of trees, that each section of each class will plant, will be the same as the class, in which they are studying, e.g., a section of Class I will plant 1 tree, a section of Class II will plant 2 trees and so on till Class XII. There are three sections of each class. How many trees will be planted by the students?
Solution :
Initially, just considering one section per class,
if each class plants the same number of trees as the level/standard/grade of it, then the trees planted by successive classes can be considered to be an A.P. with a = 1(since class starts with Std I) and d = 1.
Since there are 12 classes,
Therefore,
a12 = a + 11d
a12 = 1 + 11(1)
a12 = 12———-(1)
Sum of trees planted by one section of each class is given as,
S12 = 6 (a + a12)
S12 = (6)(1 + 12)
S12 = 78———-(2)
Therefore, when 3 sections per class are considered, then the total number of trees are,
3xS12=3×78=234
Hence, the total numbers of trees planted by the children is 234.

Question 12:
A spiral is made up of successive semicircles, with centres alternately at A and B, starting with centre at A, of radii 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, … as shown in Fig. 5.4. What is the total length of such a spiral made up of thirteen
consecutive semicircles? (Take π= 22/7 )
[Hint: Length of successive semicircles is l1,l2,l3,l4,…… with centres at A, B, A, B,…..respectively.]
andhra-pradesh-ssc-class-10-solutions-for-maths-progressions-ex-6.3-2
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-12

Question 13:
200 logs are stacked in the following manner: 20 logs in the bottom row, 19 in the next row, 18 in the row next to it and so on. In how many rows are the 200 logs placed and how many logs are in the top row?
andhra-pradesh-ssc-class-10-solutions-for-maths-progressions-ex-6.3-3
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-13

Question 14:
In a bucket and ball race, a bucket is placed at the starting point, which is 5 m from the first ball, and the other balls are placed 3 m apart in a straight line. There are ten balls in the line.
andhra-pradesh-ssc-class-10-solutions-for-maths-progressions-ex-6.3-4
A competitor starts from the bucket, picks up the nearest ball, runs back with it, drops it in the bucket, runs back to pick up the next ball, runs to the bucket to drop it in, and she continues in the same way until all the balls are in the bucket. What is the total distance the competitor has to run?
[Hint: To pick up the first ball and the second ball, the total distance (in metres) run by a competitor is
2 x 5 + 2 x (5 + 3)]
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.3-14

Exercise 6.4:

Question 1:
I Which of the following situations, does the list of numbers involved in the form of a GP.?

  1. Salary of Sharmila, when her salary is 5,00,000 for the first year and expected to receive yearly increase of 10%.
  2. Number of bricks needed to make each step, if the stair case has total 30 steps. Bottom step needs 100 bricks and each successive step needs 2 brick less than the previous step.
  3. Perimeter of the each triangle, when the mid points of sides of an equilateral triangle whose side is 24 cm are joined to form another triangle, whose mid points in turn are joined to form still another triangle and the process continues indefinitely.
    andhra-pradesh-ssc-class-10-solutions-for-maths-progressions-ex-6.4-1

Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-1-1
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-1-2

Question 2:
Write three terms of the GP when the first term ‘a’ and the common ratio ‘r’ are given?
(i) a = 4; r = 3
(ii) a = √5; r = 1/5
(iii) a = 81; r =-1/3
(iv) a= 1/64; r = 2
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-2

Question 3:
Which of the following are GP? If they are in GP Write three more terms?

Question 3(i):
4, 8, 16…..
Solution :

We know that a list of numbers a1, a2, a3……an… is called a GP if each term is non zero and
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-3(i)
So, the given list of the number forms a GP with the first term as a=4 and the common ratio r=2.
Thus the next three terms are:
ar3 , ar4, ar5 = 32, 64, 128

Question 3(ii):
\(\frac { 1 }{ 3 } ,\frac { -1 }{ 6 } \frac { 1 }{ 12 }\) ……
Solution :
We know that a list of numbers a1, a2, a3……an… is called a GP if each term is non zero and
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-3(ii)

Question 3(iii):
5, 55, 555,………
Solution :
We know that a list of numbers a1, a2, a3……an… is called a GP if each term is non zero and
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-3(iii)
So, the given list of the numbers does not form a GP

Question 3(iv):
-2, -6, -l8 …….
Solution :
We know that a list of numbers a1, a2, a3……an… is called a GP if each term is non zero and
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-3(iv)

So, the given list of the numbers form a GP with the first term as A = -2 and common ratio, r = 3.
Thus the next three terms are:
ar3, ar4, ar5 = -54, -162, -486
Remark: The answer given in the text book is incorrect.

Question 3(v):
\(\frac { 1 }{ 2 } ,\frac { 1 }{ 4 } ,\frac { 1 }{ 6 }\) …….
Solution :
We know that a list of numbers a1, a2, a3……an… is called a GP if each term is non zero and
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-3(v)
So, the given list of the numbers does not form a GP

Question 3(vi):
\(3,-{ 3 }^{ 2 },{ 3 }^{ 3 },\)….
Solution :
We know that a list of numbers a1, a2, a3……an… is called a GP if each term is non zero and
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-3(vi)
So, the given list of the number forms a GP with the first term as a=3 and common ratio r=-3.
The next three terms are :
Ar3, ar4, ar5 = -81, 243, -729

Question 3(vii):
\(x,1,\frac { 1 }{ x } ,\)…..
Solution :
We know that a list of numbers a1, a2, a3……an… is called a GP if each term is non zero and
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-3(vii)

Question 3(viii):
1/√2, -2, 8/√2……..
Solution :
We know that a list of numbers a1, a2, a3……an… is called a GP if each term is non zero and
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-3(viii)

Question 3(ix):
0.4, 0.04, 0.004,…….
Solution :
We know that a list of numbers a1, a2, a3……an… is called a GP if each term is non zero and
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-3(ix)
So, the given list of the number forms a GP with the first term as a=0.4 common ratio r= 0.1
Thus, the next three terms are:
ar3, ar4, ar5 = 0.0004, 0.00004, 0.000004

Question 4:
Find x so that x, X + 2,x + 6 are consecutive terms of a geometric progression.
Solution :
Since they are consecutive terms and hence b=3
So , x, x+2, x+3
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.4-4
(x+2)2=x(x+3)
x2+4x+4=x2+3x
4x+4=3x
4x-3x=-4
x=-4
Ans: the value of x is -4.

Exercise 6.5:

Question 1:
For each geometric progression find the common ratio ‘r’, and then find an.
(i) \(3,\frac { 3 }{ 2 } ,\frac { 3 }{ 4 } ,\frac { 3 }{ 8 } \)…….
(ii) 2,-6, 18,-54
(iii) -1,-3, -9,-27….
(iv) \(5,2,\frac { 4 }{ 5 } ,\frac { 8 }{ 25 } \)………
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.5-1

Question 2:
Find the 10th and nth term of GP.: 5,25,125,……….
Solution :
Here a=5 and r=5
In a GP nth term is given by an=arn-1.
Then a10=5(5)10-1=5(5)9=510
and an=arn-1=5(5)n-1=5n

Question 3:
Find the indicated term of each geometric Progression
andhra-pradesh-ssc-class-10-solutions-for-maths-progressions-ex-6.5-1
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.5-3

Question 4:
Which term of the GP.
andhra-pradesh-ssc-class-10-solutions-for-maths-progressions-ex-6.5-2
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.5-4

Question 5:
Find the 12th term of a GP. whose 8th term is 192 and the common ratio is 2.
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.5-5

Question 6:
The 4th term of a geometric progression is 2/3 and the seventh term is 16/81. Find the geometric series.
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.5-6

Question 7:
If the geometric progressions 162, 54,18 and \(\frac { 2 }{ 81 } ,\frac { 2 }{ 27 } ,\frac { 2 }{ 9 } \)…. have their nth term equal. Find the value of n.
Solution :
Andhra Pradesh SSC Class 10 Solutions For Maths - Progressions-6.5-7

Hope given Andhra Pradesh SSC Class 10 Solutions For Maths chapter 6 Progressions are helpful to complete your math homework.

If you have any doubts, please comment below. CBSEtuts try to provide online math tutoring for you.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers
  • The Summer Of The Beautiful White Horse Answers
  • Job Application Letter class 12 Samples
  • Science Lab Manual Class 9
  • Letter to The Editor Class 12 Samples
  • Unseen Passage For Class 6 Answers
  • NCERT Solutions for Class 12 Hindi Core
  • Invitation and Replies Class 12 Examples
  • Advertisement Writing Class 11 Examples
  • Lab Manual Class 10 Science

Recent Posts

  • Understanding Diversity Question Answer Class 6 Social Science Civics Chapter 1 NCERT Solutions
  • Our Changing Earth Question Answer Class 7 Social Science Geography Chapter 3 NCERT Solutions
  • Inside Our Earth Question Answer Class 7 Social Science Geography Chapter 2 NCERT Solutions
  • Rulers and Buildings Question Answer Class 7 Social Science History Chapter 5 NCERT Solutions
  • On Equality Question Answer Class 7 Social Science Civics Chapter 1 NCERT Solutions
  • Role of the Government in Health Question Answer Class 7 Social Science Civics Chapter 2 NCERT Solutions
  • Vital Villages, Thriving Towns Question Answer Class 6 Social Science History Chapter 9 NCERT Solutions
  • New Empires and Kingdoms Question Answer Class 6 Social Science History Chapter 11 NCERT Solutions
  • The Delhi Sultans Question Answer Class 7 Social Science History Chapter 3 NCERT Solutions
  • The Mughal Empire Question Answer Class 7 Social Science History Chapter 4 NCERT Solutions
  • India: Climate Vegetation and Wildlife Question Answer Class 6 Social Science Geography Chapter 8 NCERT Solutions
  • Traders, Kings and Pilgrims Question Answer Class 6 Social Science History Chapter 10 NCERT Solutions
  • Environment Question Answer Class 7 Social Science Geography Chapter 1 NCERT Solutions
  • Understanding Advertising Question Answer Class 7 Social Science Civics Chapter 7 NCERT Solutions
  • The Making of Regional Cultures Question Answer Class 7 Social Science History Chapter 9 NCERT Solutions

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions