• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers Ex 1.1

Complete solutions of Ex 1.1 Class 10 Maths Chapter 1 with additional questions and answers from new NCERT syllabus textbook Class 10 Maths.

NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers Ex 1.1 are part of NCERT Solutions for Class 10 Maths. Here we have given NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers Ex 1.1

  • Real Numbers Class 10 Ex 1.1
  • Real Numbers Class 10 Ex 1.2
  • Real Numbers Class 10 Ex 1.3
  • Real Numbers Class 10 Ex 1.4
Board CBSE
Textbook NCERT
Class Class 10
Subject Maths
Chapter Chapter 1
Chapter Name Real Numbers
Exercise Ex 1.1
Number of Questions Solved 5
Category NCERT Solutions

NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers Ex 1.1

You can also Download NCERT Solutions for class 10 Maths in Hindi to help you to revise complete Syllabus and score more marks in your examinations.

Ex 1.1 Class 10 Maths Question 1.
Use Euclid’s Division Algorithm to find the HCF of:
(i) 135 and 225
(ii) 196 and 38220
(iii) 867 and 255
Solution:
(i) By Euclid’s Division Algorithm, we have
225 = 135 x 1 + 90 135
= 90 x 1 + 45 90
= 45 x 2 + 0
∴ HCF (135, 225) = 45.

(ii) By Euclid’s Division Algorithm, we have
38220 = 196 x 195 + 0
196 = 196 x 1 + 0
∴  HCF (38220, 196) = 196.

(iii) By Euclid’s Division Algorithm, we have
867 = 255 x 3 + 102
255 = 102 x 2 + 51
102 = 51 x 2 + 0
∴ HCF (867, 255) = 51.

Ex 1.1 Class 10 Maths Question 2.
Show that any positive odd integer is of the form 6q + 1, or 6q + 3, or 6q + 5, where q is some integer.
Solution:
Let a be a positive odd integer. Also, let q be the quotient and r the remainder after dividing a by 6.
Then, a = 6q + r, where 0 ≤ r < 6.
Putting r = 0, 1, 2, 3, 4, and 5, we get:
a = 6q, a = 6q + 1, a = 6q + 2, a = 6q + 3, a = 6q + 4, a = 6q + 5
But a = 6q, a = 6q + 2 and a = 6q + 4 are even.
Hence, when a is odd, it is of the form 6q + 1, 6q + 3, and 6q + 5 for some integer q.
Hence proved.

Ex 1.1 Class 10 Maths Question 3.
An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?
Solution:
Let n be the number of columns such that the value of n be maximum and it must divide both the numbers 616 and 32.
Then, n = HCF (616, 32)
By Euclid’s Division Algorithm, we have:
616 = 32 x 19 + 8 32 = 8 x 4 + 0
∴ HCF (616, 32) = 8
i. e., n = 8
Hence, the maximum number of columns is 8.

Ex 1.1 Class 10 Maths Question 4.
Use Euclid’s division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.
Solution:
Let a be a positive integer, q be the quotient and r be the remainder.
Dividing a by 3 using the Euclid’s Division Lemma,
we have:
a = 3q + r, where 0 ≤ r < 3
Putting r = 0, 1 and 2, we get:
a = 3q
⇒ a2 = 9q2
= 3 x 3q2
= 3m (Assuming m = q2)
Then, a = 3q + 1
⇒  a2 = (3q + l)2 = 9q2 + 6q + 1
= 3(3q 2 + 2q) + 1
= 3m + 1 (Assuming m = 3q2 + 2q)
Next, a = 3q + 2
⇒ a2 = (3q + 2)2 =9q2 + 12q + 4
= 9q2 + 12q + 3 + 1
= 3(3q2 + 4q + 1) + 1
= 3m + 1.   (Assuming m = 3q2 + 4q+l)
Therefore, the square of any positive integer (say, a2) is always of the form 3m or 3m + 1.
Hence, proved.

Ex 1.1 Class 10 Maths Question 5.
Use Euclid’s Division Lemma to show that the cube of any positive integer is either of the form 9m, 9m + 1 or 9m + 8.
Solution:
Let a be a positive integer, q be the quotient and r be the remainder.
Dividing a by 3 using the Euclid’s Division Algorithm, we have,
a = 3q + r, where 0 ≤ r < 3
Putting r = 0, 1 and 2, we get:
a = 3q, a = 3q + 1 and a = 3q + 2
If a = 3q, then a3 = 27q3 = 9(3q3) = 9m. (Assuming m = 3q3.)
If a = 3q + 1, then
a3 = (3q + l)3 = 27q3 + 9q(3q + 1) + 1 = 9(3q3 + 3q2 + q) + 1 = 9m + 1,  (Assuming m = 3q3 + 3q2 + q)
If a = 3q + 2, then a3 = (3q + 2)3
= 27q3 + 18q(3q + 2) + (2)3
= 9(3q3 + 6q2 + 4q) + 8
= 9m + 8, (Assuming m – 3q3 + 6q2 + 4q)
Hence, a3 is of the form 9m, 9m + 1 or 9m + 8.

We hope the NCERT Solutions for Class 10 Mathematics Chapter 1 Real Numbers Ex 1.1 help you. If you have any query regarding NCERT Solutions for Class 10 Mathematics Chapter 1 Real Numbers Ex 1.1, drop a comment below and we will get back to you at the earliest.

 

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • NCERT Exemplar Problems Class 7 Maths – Exponents and Powers
  • NCERT Exemplar Class 7 Maths Practical Geometry Symmetry and Visualising Solid Shapes
  • NCERT Exemplar Class 7 Maths Algebraic Expression
  • NCERT Solutions for Class 11 Maths Chapter 8 Binomial Theorem Ex 8.2
  • NCERT Exemplar Problems Class 7 Maths – Perimeter and Area
  • NEET Physics Chapter Wise Mock Test – General properties of matter
  • ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 6 Factorization MCQS
  • Division of a Polynomial by a Monomial
  • Multiplication-Decimal Numbers
  • Proper, Improper and Mixed fractions
  • NCERT Exemplar Class 7 Maths Rational Numbers
  • Fractions
  • NCERT Exemplar Class 10 Maths Solutions Chapter 13 Statistics and Probability
  • NCERT Exemplar Class 10 Maths Solutions Chapter 12 Surface Areas and Volumes
  • NCERT Exemplar Class 7 Maths Triangles

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
cbse ncert
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions