• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

  • NCERT Solutions
    • NCERT Solutions for Class 12 English Flamingo and Vistas
    • NCERT Solutions for Class 11 English
    • NCERT Solutions for Class 11 Hindi
    • NCERT Solutions for Class 12 Hindi
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers Ex 1.1

Complete solutions of Ex 1.1 Class 10 Maths Chapter 1 with additional questions and answers from new NCERT syllabus textbook Class 10 Maths.

NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers Ex 1.1 are part of NCERT Solutions for Class 10 Maths. Here we have given NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers Ex 1.1

  • Real Numbers Class 10 Ex 1.1
  • Real Numbers Class 10 Ex 1.2
  • Real Numbers Class 10 Ex 1.3
  • Real Numbers Class 10 Ex 1.4
Board CBSE
Textbook NCERT
Class Class 10
Subject Maths
Chapter Chapter 1
Chapter Name Real Numbers
Exercise Ex 1.1
Number of Questions Solved 5
Category NCERT Solutions

NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers Ex 1.1

You can also Download NCERT Solutions for class 10 Maths in Hindi to help you to revise complete Syllabus and score more marks in your examinations.

Ex 1.1 Class 10 Maths Question 1.
Use Euclid’s Division Algorithm to find the HCF of:
(i) 135 and 225
(ii) 196 and 38220
(iii) 867 and 255
Solution:
(i) By Euclid’s Division Algorithm, we have
225 = 135 x 1 + 90 135
= 90 x 1 + 45 90
= 45 x 2 + 0
∴ HCF (135, 225) = 45.

(ii) By Euclid’s Division Algorithm, we have
38220 = 196 x 195 + 0
196 = 196 x 1 + 0
∴  HCF (38220, 196) = 196.

(iii) By Euclid’s Division Algorithm, we have
867 = 255 x 3 + 102
255 = 102 x 2 + 51
102 = 51 x 2 + 0
∴ HCF (867, 255) = 51.

Ex 1.1 Class 10 Maths Question 2.
Show that any positive odd integer is of the form 6q + 1, or 6q + 3, or 6q + 5, where q is some integer.
Solution:
Let a be a positive odd integer. Also, let q be the quotient and r the remainder after dividing a by 6.
Then, a = 6q + r, where 0 ≤ r < 6.
Putting r = 0, 1, 2, 3, 4, and 5, we get:
a = 6q, a = 6q + 1, a = 6q + 2, a = 6q + 3, a = 6q + 4, a = 6q + 5
But a = 6q, a = 6q + 2 and a = 6q + 4 are even.
Hence, when a is odd, it is of the form 6q + 1, 6q + 3, and 6q + 5 for some integer q.
Hence proved.

Ex 1.1 Class 10 Maths Question 3.
An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?
Solution:
Let n be the number of columns such that the value of n be maximum and it must divide both the numbers 616 and 32.
Then, n = HCF (616, 32)
By Euclid’s Division Algorithm, we have:
616 = 32 x 19 + 8 32 = 8 x 4 + 0
∴ HCF (616, 32) = 8
i. e., n = 8
Hence, the maximum number of columns is 8.

Ex 1.1 Class 10 Maths Question 4.
Use Euclid’s division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.
Solution:
Let a be a positive integer, q be the quotient and r be the remainder.
Dividing a by 3 using the Euclid’s Division Lemma,
we have:
a = 3q + r, where 0 ≤ r < 3
Putting r = 0, 1 and 2, we get:
a = 3q
⇒ a2 = 9q2
= 3 x 3q2
= 3m (Assuming m = q2)
Then, a = 3q + 1
⇒  a2 = (3q + l)2 = 9q2 + 6q + 1
= 3(3q 2 + 2q) + 1
= 3m + 1 (Assuming m = 3q2 + 2q)
Next, a = 3q + 2
⇒ a2 = (3q + 2)2 =9q2 + 12q + 4
= 9q2 + 12q + 3 + 1
= 3(3q2 + 4q + 1) + 1
= 3m + 1.   (Assuming m = 3q2 + 4q+l)
Therefore, the square of any positive integer (say, a2) is always of the form 3m or 3m + 1.
Hence, proved.

Ex 1.1 Class 10 Maths Question 5.
Use Euclid’s Division Lemma to show that the cube of any positive integer is either of the form 9m, 9m + 1 or 9m + 8.
Solution:
Let a be a positive integer, q be the quotient and r be the remainder.
Dividing a by 3 using the Euclid’s Division Algorithm, we have,
a = 3q + r, where 0 ≤ r < 3
Putting r = 0, 1 and 2, we get:
a = 3q, a = 3q + 1 and a = 3q + 2
If a = 3q, then a3 = 27q3 = 9(3q3) = 9m. (Assuming m = 3q3.)
If a = 3q + 1, then
a3 = (3q + l)3 = 27q3 + 9q(3q + 1) + 1 = 9(3q3 + 3q2 + q) + 1 = 9m + 1,  (Assuming m = 3q3 + 3q2 + q)
If a = 3q + 2, then a3 = (3q + 2)3
= 27q3 + 18q(3q + 2) + (2)3
= 9(3q3 + 6q2 + 4q) + 8
= 9m + 8, (Assuming m – 3q3 + 6q2 + 4q)
Hence, a3 is of the form 9m, 9m + 1 or 9m + 8.

We hope the NCERT Solutions for Class 10 Mathematics Chapter 1 Real Numbers Ex 1.1 help you. If you have any query regarding NCERT Solutions for Class 10 Mathematics Chapter 1 Real Numbers Ex 1.1, drop a comment below and we will get back to you at the earliest.

 

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers
  • The Summer Of The Beautiful White Horse Answers
  • Job Application Letter class 12 Samples
  • Science Lab Manual Class 9
  • Letter to The Editor Class 12 Samples
  • Unseen Passage For Class 6 Answers
  • NCERT Solutions for Class 12 Hindi Core
  • Invitation and Replies Class 12 Examples
  • Advertisement Writing Class 11 Examples
  • Lab Manual Class 10 Science

Recent Posts

  • Understanding Diversity Question Answer Class 6 Social Science Civics Chapter 1 NCERT Solutions
  • Our Changing Earth Question Answer Class 7 Social Science Geography Chapter 3 NCERT Solutions
  • Inside Our Earth Question Answer Class 7 Social Science Geography Chapter 2 NCERT Solutions
  • Rulers and Buildings Question Answer Class 7 Social Science History Chapter 5 NCERT Solutions
  • On Equality Question Answer Class 7 Social Science Civics Chapter 1 NCERT Solutions
  • Role of the Government in Health Question Answer Class 7 Social Science Civics Chapter 2 NCERT Solutions
  • Vital Villages, Thriving Towns Question Answer Class 6 Social Science History Chapter 9 NCERT Solutions
  • New Empires and Kingdoms Question Answer Class 6 Social Science History Chapter 11 NCERT Solutions
  • The Delhi Sultans Question Answer Class 7 Social Science History Chapter 3 NCERT Solutions
  • The Mughal Empire Question Answer Class 7 Social Science History Chapter 4 NCERT Solutions
  • India: Climate Vegetation and Wildlife Question Answer Class 6 Social Science Geography Chapter 8 NCERT Solutions
  • Traders, Kings and Pilgrims Question Answer Class 6 Social Science History Chapter 10 NCERT Solutions
  • Environment Question Answer Class 7 Social Science Geography Chapter 1 NCERT Solutions
  • Understanding Advertising Question Answer Class 7 Social Science Civics Chapter 7 NCERT Solutions
  • The Making of Regional Cultures Question Answer Class 7 Social Science History Chapter 9 NCERT Solutions

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions