• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • GSEB Solutions
  • Maharashtra Board
  • Kerala Board
    • Kerala Syllabus 9th Standard Physics Solutions Guide
    • Kerala Syllabus 9th Standard Biology Solutions Guide
  • Goa Board

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4

NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 are part of NCERT Solutions for Class 12 Maths. Here we have given NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4.

  • Vector Algebra Class 12 Ex 10.1
  • Vector Algebra Class 12 Ex 10.2
  • Vector Algebra Class 12 Ex 10.3
Board CBSE
Textbook NCERT
Class Class 12
Subject Maths
Chapter Chapter 10
Chapter Name Vector Algebra
Exercise Ex 10.4
Number of Questions Solved 12
Category NCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4

Ex 10.4 Class 12 Maths Question 1.
Find \left| \overrightarrow { a } \times \overrightarrow { b } \right| ,if\quad \overrightarrow { a } =\hat { i } -7\hat { j } +7\hat { k } \quad and\quad \overrightarrow { b } =3\hat { i } -2\hat { j } +2\hat { k }
Solution:
Given
\overrightarrow { a } =\hat { i } -7\hat { j } +7\hat { k } \quad and\quad \overrightarrow { b } =3\hat { i } -2\hat { j } +2\hat { k }
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Q1.1

NCERT Maths Class 12 Chapter 10

Ex 10.4 Class 12 Maths Question 2.
Find a unit vector perpendicular to each of the vector \overrightarrow { a } +\overrightarrow { b } \quad and\quad \overrightarrow { a } -\overrightarrow { b } , where \overrightarrow { a } =3\hat { i } +2\hat { j } +2\hat { k } \quad and\quad \overrightarrow { b } =\hat { i } +2\hat { j } -2\hat { k }
Solution:
we have
\overrightarrow { a } =3\hat { i } +2\hat { j } +2\hat { k } \quad and\quad \overrightarrow { b } =\hat { i } +2\hat { j } -2\hat { k }
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Q2.1

Ex 10.4 Class 12 Maths Question 3.
If a unit vector \overrightarrow { a } makes angle \frac { \pi }{ 3 } with\quad \hat { i } ,\frac { \pi }{ 4 } with\quad \hat { j } and an acute angle θ with \overrightarrow { k } ,then find θ and hence the components of \overrightarrow { a } .
Solution:
Let\quad \overrightarrow { a } ={ a }_{ 1 }\hat { i } +{ a }_{ 2 }\hat { j } +{ a }_{ 3 }\hat { k } such\quad that\quad \left| \overrightarrow { a } \right| =1
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Q3.1

Ex 10.4 Class 12 Maths Question 4.
Show that \left( \overrightarrow { a } -\overrightarrow { b } \right) \times \left( \overrightarrow { a } +\overrightarrow { b } \right) =2\left( \overrightarrow { a } \times \overrightarrow { b } \right)
Solution:
LHS = \left( \overrightarrow { a } -\overrightarrow { b } \right) \times \left( \overrightarrow { a } +\overrightarrow { b } \right)
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Q4.1

Ex 10.4 Class 12 Maths Question 5.
Find λ and μ if
\left( 2\hat { i } +6\hat { j } +27\hat { k } \right) \times \left( \hat { i } +\lambda \hat { j } +\mu \hat { k } \right) =0
Solution:
\left( 2\hat { i } +6\hat { j } +27\hat { k } \right) \times \left( \hat { i } +\lambda \hat { j } +\mu \hat { k } \right) =0
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Q5.1

Ex 10.4 Class 12 Maths Question 6.
Given that \overrightarrow { a } .\overrightarrow { b } =0\quad and\quad \overrightarrow { a } \times \overrightarrow { b } =0. What can you conclude about the vectors \overrightarrow { a } ,\overrightarrow { b } ?
Solution:
\overrightarrow { a } .\overrightarrow { b } =0\quad and\quad \overrightarrow { a } \times \overrightarrow { b } =0
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Q6.1

Ex 10.4 Class 12 Maths Question 7.
Let the vectors \overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } are given { a }_{ 1 }\hat { i } +{ a }_{ 2 }\hat { j } +{ a }_{ 3 }\hat { k } ,{ b }_{ 1 }\hat { i } +{ b }_{ 2 }\hat { j } +{ b }_{ 3 }\hat { k } ,{ c }_{ 1 }\hat { i } +{ c }_{ 2 }\hat { j } +{ c }_{ 3 }\hat { k } . Then show that \overrightarrow { a } \times \left( \overrightarrow { b } +\overrightarrow { c } \right) =\overrightarrow { a } \times \overrightarrow { b } +\overrightarrow { a } \times \overrightarrow { c }
Solution:
Given
\overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } are given { a }_{ 1 }\hat { i } +{ a }_{ 2 }\hat { j } +{ a }_{ 3 }\hat { k } ,{ b }_{ 1 }\hat { i } +{ b }_{ 2 }\hat { j } +{ b }_{ 3 }\hat { k } ,{ c }_{ 1 }\hat { i } +{ c }_{ 2 }\hat { j } +{ c }_{ 3 }\hat { k }
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Q7.1

Ex 10.4 Class 12 Maths Question 8.
If either \overrightarrow { a } =0\quad or\quad \overrightarrow { b } =0\quad then\quad \hat { a } \times \hat { b } =0.Is the
converse true? Justify your answer with an example.
Solution:
\overrightarrow { a } =0\Rightarrow \left| \overrightarrow { a } \right| =0
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Q8.1

Ex 10.4 Class 12 Maths Question 9.
Find the area of the triangle with vertices A (1,1,2), B (2,3,5) and C (1,5,5).
Solution:
A (1,1,2), B (2,3,5) and C (1,5,5).
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra 9
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Q9.1

Ex 10.4 Class 12 Maths Question 10.
Find the area of the parallelogram whose adjacent sides are determined by the vectors \overrightarrow { a } =\hat { i } -\hat { j } +3\hat { k } ,\overrightarrow { b } =2\hat { i } -7\hat { j } +\hat { k }
Solution:
We have \overrightarrow { a } =\hat { i } -\hat { j } +3\hat { k } ,\overrightarrow { b } =2\hat { i } -7\hat { j } +\hat { k }
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Q10.1

Ex 10.4 Class 12 Maths Question 11.
Let the vectors\overrightarrow { a } ,\overrightarrow { b } such that \left| \overrightarrow { a } \right| =3,\left| \overrightarrow { b } \right| =\frac { \sqrt { 2 } }{ 3 } then \overrightarrow { a } \times \overrightarrow { b } is a unit vector if the angle between \overrightarrow { a } ,\overrightarrow { b } is
(a) \frac { \pi }{ 6 }
(b) \frac { \pi }{ 4 }
(c) \frac { \pi }{ 3 }
(d) \frac { \pi }{ 2 }
Solution:
Given
\left| \overrightarrow { a } \times \overrightarrow { b } \right| =1
\left| \overrightarrow { a } \right| =3,\left| \overrightarrow { b } \right| =\frac { \sqrt { 2 } }{ 3 }
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Q11.1

Ex 10.4 Class 12 Maths Question 12.
Area of a rectangles having vertices
A\left( -\hat { i } +\frac { 1 }{ 2 } \hat { j } +4\hat { k } \right) ,B\left( \hat { i } +\frac { 1 }{ 2 } \hat { j } +4\hat { k } \right) ,
C\left( \hat { i } -\frac { 1 }{ 2 } \hat { j } +4\hat { k } \right) ,D\left( -\hat { i } -\frac { 1 }{ 2 } \hat { j } +4\hat { k } \right) ,
(a) \frac { 1 }{ 2 } sq units
(b) 1sq.units
(c) 2sq.units
(d) 4sq.units
Solution:
\overrightarrow { OA } =\left( -\hat { i } +\frac { 1 }{ 2 } \hat { j } +4\hat { k } \right)
\overrightarrow { OB } =\left( \hat { i } +\frac { 1 }{ 2 } \hat { j } +4\hat { k } \right)
NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Q12.1

We hope the NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 help you. If you have any query regarding NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • Political Science Class 12 Important Questions Chapter 1 The Cold War Era
  • MCQ Questions for Class 6 Science with Answers PDF Download Chapter Wise
  • MCQ Questions for Class 7 Science with Answers PDF Download Chapter Wise
  • NCERT Solutions for Class 6 Sanskrit Ruchira Bhag 1
  • MCQ Questions for Class 8 Science with Answers PDF Download Chapter Wise
  • NCERT Solutions for Class 7 Maths Chapter 15 Visualising Solid Shapes InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 14 Symmetry InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 13 Exponents and Powers InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 12 Algebraic Expressions InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 9 Rational Numbers InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 8 Comparing Quantities InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 7 Congruence of Triangles InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 6 The Triangle and its Properties InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 5 Lines and Angles InText Questions

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions