• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • GSEB Solutions
  • Maharashtra Board
  • Kerala Board
    • Kerala Syllabus 9th Standard Physics Solutions Guide
    • Kerala Syllabus 9th Standard Biology Solutions Guide
  • Goa Board

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 are part of NCERT Solutions for Class 12 Maths. Here we have given NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4.

  • Differential Equations Class 12 Ex 9.1
  • Differential Equations Class 12 Ex 9.2
  • Differential Equations Class 12 Ex 9.3
  • Differential Equations Class 12 Ex 9.5
  • Differential Equations Class 12 Ex 9.6
Board CBSE
Textbook NCERT
Class Class 12
Subject Maths
Chapter Chapter 9
Chapter Name Differential Equations
Exercise Ex 9.4
Number of Questions Solved 23
Category NCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4

For each of the following D.E in Q. 1 to 10 find the general solution:

Ex 9.4 Class 12 Maths Question 1.
\frac { dy }{ dx } =\frac { 1-cosx }{ 1+cosx }
Solution:
\frac { dy }{ dx } =\frac { 1-cosx }{ 1+cosx }
\frac { dy }{ dx } =\frac { 1-cosx }{ 1+cosx } =\frac { { 2sin }^{ 2 }\left( \frac { x }{ 2 } \right) }{ { 2cos }^{ 2 }\left( \frac { x }{ 2 } \right) } ={ tan }^{ 2 }\left( \frac { x }{ 2 } \right)
integrating both sides, we get
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q1.1

Ex 9.4 Class 12 Maths Question 2.
\frac { dy }{ dx } =\sqrt { 4-{ y }^{ 2 } } (-2<y<2)
Solution:
\frac { dy }{ dx } =\sqrt { 4-{ y }^{ 2 } } \Rightarrow \int { \frac { dy }{ \sqrt { { 4-y }^{ 2 } } } } =\int { dx }
\Rightarrow { sin }^{ -1 }\frac { y }{ 2 } =x+C
\Rightarrow y=2sin(x+C)

Ex 9.4 Class 12 Maths Question 3.
\frac { dy }{ dx } +y=1(y\neq 1)
Solution:
\frac { dy }{ dx } +y=1\Rightarrow \int { \frac { dy }{ y-1 } } =-\int { dx }
\Rightarrow log(y-1)=-x+c\Rightarrow y=1+{ e }^{ -x }.{ e }^{ c }
Hence\quad y=1+{ Ae }^{ -x }
which is required solution

Ex 9.4 Class 12 Maths Question 4.
sec² x tany dx+sec² y tanx dy = 0
Solution:
we have
sec² x tany dx+sec² y tanx dy = 0
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q4.1

Ex 9.4 Class 12 Maths Question 5.
\left( { e }^{ x }+{ e }^{ -x } \right) dy-\left( { e }^{ x }-{ e }^{ -x } \right) dx=0
Solution:
we have
\left( { e }^{ x }+{ e }^{ -x } \right) dy-\left( { e }^{ x }-{ e }^{ -x } \right) dx=0
Integrating on both sides
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q5.1

Ex 9.4 Class 12 Maths Question 6.
\frac { dy }{ dx } =\left( { 1+x }^{ 2 } \right) \left( { 1+y }^{ 2 } \right)
Solution:
\frac { dy }{ { 1+y }^{ 2 } } =\left( { 1+x }^{ 2 } \right) dx
integrating on both side we get
{ tan }^{ -1 }y={ x+\frac { 1 }{ 3 } }x^{ 3 }+c
which is required solution

Ex 9.4 Class 12 Maths Question 7.
y logy dx – x dy = 0
Solution:
\because \quad y\quad logy\quad dx=x\quad dy\Rightarrow \frac { dy }{ y\quad logy } =\frac { dx }{ x }
integrating we get
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q7.1

Ex 9.4 Class 12 Maths Question 8.
{ x }^{ 5 }\frac { dy }{ dx } =-{ y }^{ 5 }
Solution:
{ x }^{ 5 }\frac { dy }{ dx } =-{ y }^{ 5 }\Rightarrow \int { { y }^{ -5 }dy } =-\int { { x }^{ -5 }dx }
\Rightarrow -\frac { 1 }{ { y }^{ 4 } } =\frac { 1 }{ { x }^{ 4 } } +4c\Rightarrow { x }^{ -4 }+{ y }^{ -4 }=k

Ex 9.4 Class 12 Maths Question 9.
solve the following
\frac { dy }{ dx } ={ sin }^{ -1 }x
Solution:
\frac { dy }{ dx } ={ sin }^{ -1 }x\Rightarrow \int { dy } =\int { { sin }^{ -1 }xdx }
integrating both sides we get
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q9.1

Ex 9.4 Class 12 Maths Question 10.
{ e }^{ x }tany\quad dx+{ (1-e }^{ x }){ sec }^{ 2 }dy=0
Solution:
{ e }^{ x }tany\quad dx+{ (1-e }^{ x }){ sec }^{ 2 }dy=0
we can write in another form
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q10.1

Find a particular solution satisfying the given condition for the following differential equation in Q.11 to 14.

Ex 9.4 Class 12 Maths Question 11.
\left( { x }^{ 3 }+{ x }^{ 2 }+x+1 \right) \frac { dy }{ dx } ={ 2x }^{ 2 }+x;y=1,when\quad x=0
Solution:
here
dy=\frac { { 2x }^{ 2 }+x }{ \left( { x }^{ 3 }+{ x }^{ 2 }+x+1 \right) } dx
integrating we get
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q11.1

Ex 9.4 Class 12 Maths Question 12.
x\left( { x }^{ 2 }-1 \right) \frac { dy }{ dx } =1,y=0\quad when\quad x=2
Solution:
x\left( { x }^{ 2 }-1 \right) \frac { dy }{ dx } =1,y=0\quad when\quad x=2
\Rightarrow \int { dy } =\int { \frac { dy }{ x(x+1)(x-1) } }
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q12.1

Ex 9.4 Class 12 Maths Question 13.
cos\left( \frac { dy }{ dx } \right) =a,(a\epsilon R),y=1\quad when\quad x=0
Solution:
cos\left( \frac { dy }{ dx } \right) =a\quad \therefore \frac { dy }{ dx } ={ cos }^{ -1 }a
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q13.1

Ex 9.4 Class 12 Maths Question 14.
\frac { dy }{ dx } =ytanx,y=1\quad when\quad x=0
Solution:
\frac { dy }{ dx } =ytanx\Rightarrow \int { \frac { dy }{ y } } =\int { tanx\quad dx }
=> logy = logsecx + C
When x = 0, y = 1
=> log1 = log sec0 + C => 0 = log1 + C
=> C = 0
∴ logy = log sec x
=> y = sec x.

Ex 9.4 Class 12 Maths Question 15.
Find the equation of the curve passing through the point (0,0) and whose differential equation { y }^{ I }={ e }^{ x }sinx
Solution:
{ y }^{ I }={ e }^{ x }sinx
\Rightarrow dy={ e }^{ x }sinx\quad dx
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q15.1

Ex 9.4 Class 12 Maths Question 16.
For the differential equation xy\frac { dy }{ dx } =(x+2)(y+2) find the solution curve passing through the point (1,-1)
Solution:
The differential equation isxy\frac { dy }{ dx } =(x+2)(y+2)
or xydy=(x + 2)(y+2)dx
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q16.1

Ex 9.4 Class 12 Maths Question 17.
Find the equation of a curve passing through the point (0, -2) given that at any point (pc, y) on the curve the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point
Solution:
According to the question y\frac { dy }{ dx } =x
\Rightarrow \int { ydy } =\int { xdx } \Rightarrow \frac { { y }^{ 2 } }{ 2 } =\frac { { x }^{ 2 } }{ 2 } +c
0, – 2) lies on it.c = 2
∴ Equation of the curve is : x² – y² + 4 = 0.

Ex 9.4 Class 12 Maths Question 18.
At any point (x, y) of a curve the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (-4,-3) find the equation of the curve given that it passes through (- 2,1).
Solution:
Slope of the tangent to the curve = \frac { dy }{ dx }
slope of the line joining (x, y) and (- 4, – 3)
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q18.1

Ex 9.4 Class 12 Maths Question 19.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and offer 3 seconds it is 6 units. Find the radius of balloon after t seconds.
Solution:
Let v be volume of the balloon.
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q19.1

Ex 9.4 Class 12 Maths Question 20.
In a bank principal increases at the rate of r% per year. Find the value of r if Rs 100 double itself in 10 years
Solution:
Let P be the principal at any time t.
According to the problem
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q20.1

Ex 9.4 Class 12 Maths Question 21.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years
Solution:
Let p be the principal Rate of interest is 5%
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q21.1

Ex 9.4 Class 12 Maths Question 22.
In a culture the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000 if the rate of growth of bacteria is proportional to the number present
Solution:
Let y denote the number of bacteria at any instant t • then according to the question
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 Q22.1

Ex 9.4 Class 12 Maths Question 23.
The general solution of a differential equation \frac { dy }{ dx } ={ e }^{ x+y } is
(a) { e }^{ x }+{ e }^{ -y }=c
(b) { e }^{ x }+{ e }^{ y }=c
(c) { e }^{ -x }+{ e }^{ y }=c
(d) { e }^{ -x }+{ e }^{ -y }=c
Solution:
(a) \frac { dy }{ dx } ={ e }^{ x }.{ e }^{ y }\Rightarrow \int { { e }^{ -y }dy } =\int { { e }^{ x }dx }
\Rightarrow { e }^{ -y }={ e }^{ x }+k\Rightarrow { e }^{ x }+{ e }^{ -y }=c

We hope the NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 help you. If you have any query regarding NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • MCQ Questions for Class 6 Science with Answers PDF Download Chapter Wise
  • MCQ Questions for Class 7 Science with Answers PDF Download Chapter Wise
  • NCERT Solutions for Class 6 Sanskrit Ruchira Bhag 1
  • MCQ Questions for Class 8 Science with Answers PDF Download Chapter Wise
  • NCERT Solutions for Class 7 Maths Chapter 15 Visualising Solid Shapes InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 14 Symmetry InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 13 Exponents and Powers InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 12 Algebraic Expressions InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 9 Rational Numbers InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 8 Comparing Quantities InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 7 Congruence of Triangles InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 6 The Triangle and its Properties InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 5 Lines and Angles InText Questions
  • NCERT Solutions for Class 7 Maths Chapter 4 Simple Equations InText Questions

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions