NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 are part of NCERT Solutions for Class 12 Maths. Here we have given NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4.
- Differential Equations Class 12 Ex 9.1
- Differential Equations Class 12 Ex 9.2
- Differential Equations Class 12 Ex 9.3
- Differential Equations Class 12 Ex 9.5
- Differential Equations Class 12 Ex 9.6
Board | CBSE |
Textbook | NCERT |
Class | Class 12 |
Subject | Maths |
Chapter | Chapter 9 |
Chapter Name | Differential Equations |
Exercise | Ex 9.4 |
Number of Questions Solved | 23 |
Category | NCERT Solutions |
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4
For each of the following D.E in Q. 1 to 10 find the general solution:
Ex 9.4 Class 12 Maths Question 1.
\(\frac { dy }{ dx } =\frac { 1-cosx }{ 1+cosx } \)
Solution:
\(\frac { dy }{ dx } =\frac { 1-cosx }{ 1+cosx } \)
\(\frac { dy }{ dx } =\frac { 1-cosx }{ 1+cosx } =\frac { { 2sin }^{ 2 }\left( \frac { x }{ 2 } \right) }{ { 2cos }^{ 2 }\left( \frac { x }{ 2 } \right) } ={ tan }^{ 2 }\left( \frac { x }{ 2 } \right) \)
integrating both sides, we get
Ex 9.4 Class 12 Maths Question 2.
\(\frac { dy }{ dx } =\sqrt { 4-{ y }^{ 2 } } (-2<y<2)\)
Solution:
\(\frac { dy }{ dx } =\sqrt { 4-{ y }^{ 2 } } \Rightarrow \int { \frac { dy }{ \sqrt { { 4-y }^{ 2 } } } } =\int { dx } \)
\(\Rightarrow { sin }^{ -1 }\frac { y }{ 2 } =x+C \)
\(\Rightarrow y=2sin(x+C) \)
Ex 9.4 Class 12 Maths Question 3.
\(\frac { dy }{ dx } +y=1(y\neq 1)\)
Solution:
\(\frac { dy }{ dx } +y=1\Rightarrow \int { \frac { dy }{ y-1 } } =-\int { dx } \)
\(\Rightarrow log(y-1)=-x+c\Rightarrow y=1+{ e }^{ -x }.{ e }^{ c } \)
\(Hence\quad y=1+{ Ae }^{ -x }\)
which is required solution
Ex 9.4 Class 12 Maths Question 4.
sec² x tany dx+sec² y tanx dy = 0
Solution:
we have
sec² x tany dx+sec² y tanx dy = 0
Ex 9.4 Class 12 Maths Question 5.
\(\left( { e }^{ x }+{ e }^{ -x } \right) dy-\left( { e }^{ x }-{ e }^{ -x } \right) dx=0\)
Solution:
we have
\(\left( { e }^{ x }+{ e }^{ -x } \right) dy-\left( { e }^{ x }-{ e }^{ -x } \right) dx=0\)
Integrating on both sides
Ex 9.4 Class 12 Maths Question 6.
\(\frac { dy }{ dx } =\left( { 1+x }^{ 2 } \right) \left( { 1+y }^{ 2 } \right) \)
Solution:
\(\frac { dy }{ { 1+y }^{ 2 } } =\left( { 1+x }^{ 2 } \right) dx \)
integrating on both side we get
\({ tan }^{ -1 }y={ x+\frac { 1 }{ 3 } }x^{ 3 }+c \)
which is required solution
Ex 9.4 Class 12 Maths Question 7.
y logy dx – x dy = 0
Solution:
\(\because \quad y\quad logy\quad dx=x\quad dy\Rightarrow \frac { dy }{ y\quad logy } =\frac { dx }{ x } \)
integrating we get
Ex 9.4 Class 12 Maths Question 8.
\({ x }^{ 5 }\frac { dy }{ dx } =-{ y }^{ 5 }\)
Solution:
\({ x }^{ 5 }\frac { dy }{ dx } =-{ y }^{ 5 }\Rightarrow \int { { y }^{ -5 }dy } =-\int { { x }^{ -5 }dx } \)
\(\Rightarrow -\frac { 1 }{ { y }^{ 4 } } =\frac { 1 }{ { x }^{ 4 } } +4c\Rightarrow { x }^{ -4 }+{ y }^{ -4 }=k\)
Ex 9.4 Class 12 Maths Question 9.
solve the following
\(\frac { dy }{ dx } ={ sin }^{ -1 }x\)
Solution:
\(\frac { dy }{ dx } ={ sin }^{ -1 }x\Rightarrow \int { dy } =\int { { sin }^{ -1 }xdx } \)
integrating both sides we get
Ex 9.4 Class 12 Maths Question 10.
\({ e }^{ x }tany\quad dx+{ (1-e }^{ x }){ sec }^{ 2 }dy=0\)
Solution:
\({ e }^{ x }tany\quad dx+{ (1-e }^{ x }){ sec }^{ 2 }dy=0\)
we can write in another form
Find a particular solution satisfying the given condition for the following differential equation in Q.11 to 14.
Ex 9.4 Class 12 Maths Question 11.
\(\left( { x }^{ 3 }+{ x }^{ 2 }+x+1 \right) \frac { dy }{ dx } ={ 2x }^{ 2 }+x;y=1,when\quad x=0\)
Solution:
here
\(dy=\frac { { 2x }^{ 2 }+x }{ \left( { x }^{ 3 }+{ x }^{ 2 }+x+1 \right) } dx\)
integrating we get
Ex 9.4 Class 12 Maths Question 12.
\(x\left( { x }^{ 2 }-1 \right) \frac { dy }{ dx } =1,y=0\quad when\quad x=2\)
Solution:
\(x\left( { x }^{ 2 }-1 \right) \frac { dy }{ dx } =1,y=0\quad when\quad x=2\)
\(\Rightarrow \int { dy } =\int { \frac { dy }{ x(x+1)(x-1) } } \)
Ex 9.4 Class 12 Maths Question 13.
\(cos\left( \frac { dy }{ dx } \right) =a,(a\epsilon R),y=1\quad when\quad x=0\)
Solution:
\(cos\left( \frac { dy }{ dx } \right) =a\quad \therefore \frac { dy }{ dx } ={ cos }^{ -1 }a\)
Ex 9.4 Class 12 Maths Question 14.
\(\frac { dy }{ dx } =ytanx,y=1\quad when\quad x=0\)
Solution:
\(\frac { dy }{ dx } =ytanx\Rightarrow \int { \frac { dy }{ y } } =\int { tanx\quad dx } \)
=> logy = logsecx + C
When x = 0, y = 1
=> log1 = log sec0 + C => 0 = log1 + C
=> C = 0
∴ logy = log sec x
=> y = sec x.
Ex 9.4 Class 12 Maths Question 15.
Find the equation of the curve passing through the point (0,0) and whose differential equation \({ y }^{ I }={ e }^{ x }sinx\)
Solution:
\({ y }^{ I }={ e }^{ x }sinx\)
\(\Rightarrow dy={ e }^{ x }sinx\quad dx\)
Ex 9.4 Class 12 Maths Question 16.
For the differential equation \(xy\frac { dy }{ dx } =(x+2)(y+2)\) find the solution curve passing through the point (1,-1)
Solution:
The differential equation is\(xy\frac { dy }{ dx } =(x+2)(y+2)\)
or xydy=(x + 2)(y+2)dx
Ex 9.4 Class 12 Maths Question 17.
Find the equation of a curve passing through the point (0, -2) given that at any point (pc, y) on the curve the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point
Solution:
According to the question \(y\frac { dy }{ dx } =x\)
\(\Rightarrow \int { ydy } =\int { xdx } \Rightarrow \frac { { y }^{ 2 } }{ 2 } =\frac { { x }^{ 2 } }{ 2 } +c\)
0, – 2) lies on it.c = 2
∴ Equation of the curve is : x² – y² + 4 = 0.
Ex 9.4 Class 12 Maths Question 18.
At any point (x, y) of a curve the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (-4,-3) find the equation of the curve given that it passes through (- 2,1).
Solution:
Slope of the tangent to the curve = \(\frac { dy }{ dx }\)
slope of the line joining (x, y) and (- 4, – 3)
Ex 9.4 Class 12 Maths Question 19.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and offer 3 seconds it is 6 units. Find the radius of balloon after t seconds.
Solution:
Let v be volume of the balloon.
Ex 9.4 Class 12 Maths Question 20.
In a bank principal increases at the rate of r% per year. Find the value of r if Rs 100 double itself in 10 years
Solution:
Let P be the principal at any time t.
According to the problem
Ex 9.4 Class 12 Maths Question 21.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years
Solution:
Let p be the principal Rate of interest is 5%
Ex 9.4 Class 12 Maths Question 22.
In a culture the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000 if the rate of growth of bacteria is proportional to the number present
Solution:
Let y denote the number of bacteria at any instant t • then according to the question
Ex 9.4 Class 12 Maths Question 23.
The general solution of a differential equation \(\frac { dy }{ dx } ={ e }^{ x+y } \) is
(a) \({ e }^{ x }+{ e }^{ -y }=c \)
(b) \({ e }^{ x }+{ e }^{ y }=c \)
(c) \({ e }^{ -x }+{ e }^{ y }=c \)
(d) \({ e }^{ -x }+{ e }^{ -y }=c \)
Solution:
(a) \(\frac { dy }{ dx } ={ e }^{ x }.{ e }^{ y }\Rightarrow \int { { e }^{ -y }dy } =\int { { e }^{ x }dx } \)
\(\Rightarrow { e }^{ -y }={ e }^{ x }+k\Rightarrow { e }^{ x }+{ e }^{ -y }=c \)
We hope the NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 help you. If you have any query regarding NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4, drop a comment below and we will get back to you at the earliest.