• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

  • NCERT Solutions
    • NCERT Solutions for Class 12 English Flamingo and Vistas
    • NCERT Solutions for Class 11 English
    • NCERT Solutions for Class 11 Hindi
    • NCERT Solutions for Class 12 Hindi
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

Newton’s First Law of Motion and Inertia

From the study of subatomic particles to the laws of motion, Physics Topics offer insights into the workings of the world around us.

Newton’s First Law of Motion Definition with Examples

Newton has given three laws to describe the motion of bodies. These laws are known as Newton’s laws of motion. The Newton’s laws of motion give a precise definition of force and establish a relationship between the force applied on a body and the state of motion acquired by it. We will now discuss these laws of motion and consider some of their important applications. Let us start with the first law of motion.
Newton’s First Law of Motion 1
Some of the bodies (or objects) around us are at rest, that is, they are stationary, whereas others are in motion. Newton’s first law describes the behaviour of such bodies which are in a state of rest or of uniform motion in a straight line. According to Newton’s first law of motion: A body at rest will remain at rest, and a body in motion will continue in motion in a straight line with a uniform speed, unless it is compelled by an external force to change its state of rest or of uniform motion. It should be noted that by saying an external force, we mean a force from outside the body. Let us take some examples to make the first law of motion more clear.

Suppose a book is lying on the table. It is at rest. The book will not move by itself, that is, it cannot change its position of rest by itself. It can change its state of rest only when compelled by the force of our hands, that is, when we lift the book from the table. Thus, the position of rest of the book has been changed by the external force of our hands. And this observation supports the first part of the first law of motion.

The tendency of a body to remain at rest (stationary) or, if moving, to continue moving in a straight line, is called inertia. Newton’s first law recognizes that every body has some inertia. Inertia is that property of a body due to which it resists a change in its state of rest or of uniform motion. Greater the inertia of a body, greater will be the force required to bring a change in its state of rest or of uniform motion. In fact, mass is a measure of the inertia of a body. If a body has more mass, it has more inertia. That is, heavier objects have more inertia than lighter objects. For example, a stone has greater inertia than a football. If we kick a stone, it will not move because of its high inertia but if we kick a football, it will move a long way. Thus, a stone resists a change in its state better than a football does. So, a stone has more inertia than a football.

Similarly, a cricket ball has more inertia than a rubber ball of the same size. A cricket ball has more inertia because it has more mass (it is quite heavy). On the other hand, a rubber ball has less inertia because it has less mass (it is quite light). Thus, the inertia of a body depends on its mass. For example, if a body has mass of 1 kilogram and. another body has a mass of 20 kilograms, then the body having 20 kilogram mass will have more inertia. It is easier to move a body of mass 1 kilogram by pushing it (because of its small inertia) but it is much more difficult to move a body of mass 20 kilograms by pushing it (because of its very high inertia).
Newton’s First Law of Motion 2
From the above discussion we conclude that to overcome the inertia and make a body move from rest, we must apply an external force. It should be noted that Newton’s first law of motion is also some times called Galileo’s law of inertia. We can illustrate the Newton’s first law of motion or the property of inertia of a body with a simple experiment described below.

We take a glass tumbler and place a thick square card on its mouth as shown in Figure. A coin is then placed above this card in the middle. Let us flick the card hard with our fingers. On flicking, the card moves away but the coin drops into the glass tumbler [see Figure]. We will now explain how it happens.
Newton’s First Law of Motion 3
Initially, both, the card and the coin, are in the state of rest. Now, when we hit the card with our fingers, a force acts on the card and changes its state of rest to that of motion. Due to this, the card moves away from the mouth of the glass tumbler. The force of our flick, however, does not act on the coin, so the coin continues to be in its state of rest due to its inertia. And when the card (on which the coin had been placed) moves away, the coin falls into the glass tumbler because it prefers to maintain its state of rest due to inertia.

We will now consider the second part of the first law of motion which says that a body in uniform motion will continue to move unless a force compels it to change its state of uniform motion in a straight line. At first sight it would appear to be wrong that a body moving at uniform speed in a straight line will continue to move for ever without coming to rest. Because, if we stop pedalling a bicycle, which is moving at a uniform speed, the bicycle does not go on moving for ever, it comes to rest after some time. The moving bicycle has been compelled to change its state of uniform motion by the external force of air resistance and friction. If there were no air resistance and no friction to oppose the motion of a bicycle, then according to the first law of motion, a moving bicycle would go on moving for ever. It would not stop by itself.

We will now describe some everyday observations which are based on the property of inertia of a body (due to which it resists a change in its state of rest or of motion). When a hanging carpet is beaten with a stick, the dust particles start coming out of it. This is because the force of stick makes the carpet move to-and-fro slightly but the dust particles tend to remain at rest (or stationary) due to their inertia and hence separate from the carpet. When a tree (having flexible stem) is shaken vigorously, its fruits and leaves fall down. This is due to the fact that when the tree is shaken, it moves to-and-fro slightly but its fruits and leaves tend to remain at rest (or stationary) due to their inertia and hence detach from the tree and fall down.

We have seen that when a car or bus starts suddenly, the passengers fall backward. This is due to the fact that because of their inertia, the passengers tend to remain in their state of rest (or stationary state) even when the car or bus has started moving. When a running car or bus stops suddenly, the passengers are jerked forward because due to inertia the passengers tend to remain in their state of motion (which they possessed in a moving car or bus) even though the car or bus has come to rest. The seat belts are
Newton’s First Law of Motion 4
provided in cars so that if a fast running car stops suddenly due to some emergency (or an accident), then the passengers are not thrown forward violently, and injury can be prevented. When a car or bus turns a comer sharply, we tend to fall sideways because of our inertia or tendency to continue moving in a straight line. It is dangerous to jump out of a moving bus because the jumping man, who is moving with the high speed of the bus, would tend to remain in motion (due to inertia) even on falling to the ground and get hurt due to the resistance offered by ground.

From the above discussion, it is clear that Newton’s first law of motion gives us a definition of force. It says that a force is something which changes or tends to change the state of rest or of uniform motion of a body. In other words, a force is an influence which can produce an acceleration or retardation in a body. Force is a vector quantity having magnitude as well as direction.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers
  • The Summer Of The Beautiful White Horse Answers
  • Job Application Letter class 12 Samples
  • Science Lab Manual Class 9
  • Letter to The Editor Class 12 Samples
  • Unseen Passage For Class 6 Answers
  • NCERT Solutions for Class 12 Hindi Core
  • Invitation and Replies Class 12 Examples
  • Advertisement Writing Class 11 Examples
  • Lab Manual Class 10 Science

Recent Posts

  • Understanding Diversity Question Answer Class 6 Social Science Civics Chapter 1 NCERT Solutions
  • Our Changing Earth Question Answer Class 7 Social Science Geography Chapter 3 NCERT Solutions
  • Inside Our Earth Question Answer Class 7 Social Science Geography Chapter 2 NCERT Solutions
  • Rulers and Buildings Question Answer Class 7 Social Science History Chapter 5 NCERT Solutions
  • On Equality Question Answer Class 7 Social Science Civics Chapter 1 NCERT Solutions
  • Role of the Government in Health Question Answer Class 7 Social Science Civics Chapter 2 NCERT Solutions
  • Vital Villages, Thriving Towns Question Answer Class 6 Social Science History Chapter 9 NCERT Solutions
  • New Empires and Kingdoms Question Answer Class 6 Social Science History Chapter 11 NCERT Solutions
  • The Delhi Sultans Question Answer Class 7 Social Science History Chapter 3 NCERT Solutions
  • The Mughal Empire Question Answer Class 7 Social Science History Chapter 4 NCERT Solutions
  • India: Climate Vegetation and Wildlife Question Answer Class 6 Social Science Geography Chapter 8 NCERT Solutions
  • Traders, Kings and Pilgrims Question Answer Class 6 Social Science History Chapter 10 NCERT Solutions
  • Environment Question Answer Class 7 Social Science Geography Chapter 1 NCERT Solutions
  • Understanding Advertising Question Answer Class 7 Social Science Civics Chapter 7 NCERT Solutions
  • The Making of Regional Cultures Question Answer Class 7 Social Science History Chapter 9 NCERT Solutions

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions