• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

  • NCERT Solutions
    • NCERT Solutions for Class 12 English Flamingo and Vistas
    • NCERT Solutions for Class 11 English
    • NCERT Solutions for Class 11 Hindi
    • NCERT Solutions for Class 12 Hindi
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 are part of NCERT Solutions for Class 12 Maths . Here we have given NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2.

  • Matrices Class 12 Ex 3.1
  • Matrices Class 12 Ex 3.3
  • Matrices Class 12 Ex 3.4
Board CBSE
Textbook NCERT
Class Class 12
Subject Maths
Chapter Chapter 3
Chapter Name Matrices
Exercise Ex 3.2
Number of Questions Solved 22
Category NCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

Ex 3.2 Class 12 Maths Question 1.
Let \(A=\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix},B=\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix},C=\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}\qquad \)
Find each of the following:
(i) A + B
(ii) A – B
(iii) 3A – C
(iv) AB
(v) BA
Solution:
Let \(A=\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix},B=\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix},C=\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}\qquad \)
(i) A + B
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q1.1

Ex 3.2 Class 12 Maths Question 2.
Compute the following:
\((i)\begin{bmatrix} a & \quad b \\ -b & \quad a \end{bmatrix}+\begin{bmatrix} a & \quad b \\ b & \quad a \end{bmatrix}\)
\((ii)\begin{bmatrix} { a }^{ 2 }+{ b }^{ 2 } & \quad { b }^{ 2 }+{ c }^{ 2 } \\ { a }^{ 2 }+{ c }^{ 2 } & \quad { a }^{ 2 }+{ b }^{ 2 } \end{bmatrix}+\begin{bmatrix} 2ab & \quad 2bc \\ -2ac & \quad -2ab \end{bmatrix}\)
\((iii)\left[ \begin{matrix} \begin{matrix} -1 \\ 8 \\ 2 \end{matrix} & \begin{matrix} 4 \\ 5 \\ 8 \end{matrix} & \begin{matrix} -6 \\ 16 \\ 5 \end{matrix} \end{matrix} \right] +\left[ \begin{matrix} \begin{matrix} 12 \\ 8 \\ 3 \end{matrix} & \begin{matrix} 7 \\ 0 \\ 2 \end{matrix} & \begin{matrix} 6 \\ 5 \\ 4 \end{matrix} \end{matrix} \right] \)
\((iv)\begin{bmatrix} { cos }^{ 2 }x & \quad { sin }^{ 2 }x \\ { sin }^{ 2 }x & { \quad cos }^{ 2 }x \end{bmatrix}+\begin{bmatrix} { sin }^{ 2 }x & \quad { cos }^{ 2 }x \\ { cos }^{ 2 }x & { \quad sin }^{ 2 }x \end{bmatrix}\)
Solution:
\((i)\begin{bmatrix} a & \quad b \\ -b & \quad a \end{bmatrix}+\begin{bmatrix} a & \quad b \\ b & \quad a \end{bmatrix}\)
\(=\begin{bmatrix} 2a & \quad 2b \\ 0 & \quad 2a \end{bmatrix}\)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q2.1

Ex 3.2 Class 12 Maths Question 3.
Compute the indicated products.
(i) \(\begin{bmatrix} a & \quad b \\ -b & \quad a \end{bmatrix}\begin{bmatrix} a & \quad -b \\ b & \quad \quad a \end{bmatrix} \)
(ii) \(\left[ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right] \left[ \begin{matrix} 2 & 3 & 4 \end{matrix} \right] \)
(iii) \(\begin{bmatrix} 1 & -2 \\ 2 & \quad 3 \end{bmatrix}\left[ \begin{matrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{matrix} \right] \)
(iv) \(\left[ \begin{matrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{matrix} \right] \left[ \begin{matrix} 1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5 \end{matrix} \right] \)
(v) \(\left[ \begin{matrix} 2 \\ 3 \\ -1 \end{matrix}\begin{matrix} 1 \\ 2 \\ 1 \end{matrix} \right] \left[ \begin{matrix} \begin{matrix} 1 & 0 & 1 \end{matrix} \\ \begin{matrix} -1 & 2 & 1 \end{matrix} \end{matrix} \right] \)
(vi) \(\left[ \begin{matrix} \begin{matrix} 3 & -1 & 3 \end{matrix} \\ \begin{matrix} -1 & 0 & 2 \end{matrix} \end{matrix} \right] \left[ \begin{matrix} \begin{matrix} 2 \\ 1 \\ 3 \end{matrix} & \begin{matrix} -3 \\ 0 \\ 1 \end{matrix} \end{matrix} \right] \)
Solution:
(i) \(\begin{bmatrix} a & \quad b \\ -b & \quad a \end{bmatrix}\begin{bmatrix} a & \quad -b \\ b & \quad \quad a \end{bmatrix} \)
= \(\begin{bmatrix} { a }^{ 2 }+{ b }^{ 2 } & 0 \\ 0 & { b }^{ 2 }+{ a }^{ 2 } \end{bmatrix}\)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q3.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q3.2

Ex 3.2 Class 12 Maths Question 4.
If \(A=\left[ \begin{matrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{matrix} \right] ,B=\left[ \begin{matrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{matrix} \right] ,C=\left[ \begin{matrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{matrix} \right] \)
then compute (A + B) and (B – C). Also verify that A + (B – C) = (A + B) – C.
Solution:
Given
\(A=\left[ \begin{matrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{matrix} \right] ,B=\left[ \begin{matrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{matrix} \right] ,C=\left[ \begin{matrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{matrix} \right] \)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q4.1

Ex 3.2 Class 12 Maths Question 5.
If \(A=\left[ \begin{matrix} \frac { 2 }{ 3 } & 1 & \frac { 5 }{ 3 } \\ \frac { 1 }{ 3 } & \frac { 2 }{ 3 } & \frac { 4 }{ 3 } \\ \frac { 7 }{ 3 } & 2 & \frac { 2 }{ 3 } \end{matrix} \right] and\quad B=\left[ \begin{matrix} \frac { 2 }{ 5 } & \frac { 3 }{ 5 } & 1 \\ \frac { 1 }{ 5 } & \frac { 2 }{ 5 } & \frac { 4 }{ 5 } \\ \frac { 7 }{ 5 } & \frac { 6 }{ 5 } & \frac { 2 }{ 5 } \end{matrix} \right] ,\)
then compute 3A – 5B.
Solution:
\(3A-5B=3\left[ \begin{matrix} \frac { 2 }{ 3 } & 1 & \frac { 5 }{ 3 } \\ \frac { 1 }{ 3 } & \frac { 2 }{ 3 } & \frac { 4 }{ 3 } \\ \frac { 7 }{ 3 } & 2 & \frac { 2 }{ 3 } \end{matrix} \right] -5\left[ \begin{matrix} \frac { 2 }{ 5 } & \frac { 3 }{ 5 } & 1 \\ \frac { 1 }{ 5 } & \frac { 2 }{ 5 } & \frac { 4 }{ 5 } \\ \frac { 7 }{ 5 } & \frac { 6 }{ 5 } & \frac { 2 }{ 5 } \end{matrix} \right] ,\)
= \(\left[ \begin{matrix} 2 & 3 & 5 \\ 1 & 2 & 4 \\ 7 & 6 & 2 \end{matrix} \right] -\left[ \begin{matrix} 2 & 3 & 5 \\ 1 & 2 & 4 \\ 7 & 6 & 2 \end{matrix} \right] =\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{matrix} \right] \)

Ex 3.2 Class 12 Maths Question 6.
Simplify:
\(cos\theta \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix}+sin\theta \begin{bmatrix} sin\theta & -cos\theta \\ cos\theta & sin\theta \end{bmatrix} \)
Solution:
\(cos\theta \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix}+sin\theta \begin{bmatrix} sin\theta & -cos\theta \\ cos\theta & sin\theta \end{bmatrix} \)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q6.1

Ex 3.2 Class 12 Maths Question 7.
Find X and Y if
\((i)\quad X+Y=\begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}and\quad X-Y=\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \)
\((ii)\quad 2X+3Y=\begin{bmatrix} 2 & 0 \\ 4 & 0 \end{bmatrix}and\quad 3X+2Y=\begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix}\)
Solution:
\((i)\quad X+Y=\begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}and\quad X-Y=\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q7.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q7.2

Ex 3.2 Class 12 Maths Question 8.
Find
\(X\quad if\quad Y=\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}and\quad 2X+Y=\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}\)
Solution:
\(Y=\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}\)
We are given that
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q8.1

Ex 3.2 Class 12 Maths Question 9.
Find x and y, if \(2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix}+\begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix}=\begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}\)
Solution:
\(2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix}+\begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix}=\begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}\)
=> \(\begin{bmatrix} 2+y & \quad 6 \\ 1 & \quad 2x+2 \end{bmatrix}=\begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}\)
=> 2+y = 5 and 2x+2 = 8
=> y=3 and x=3
Hence x=3 and y=3

Ex 3.2 Class 12 Maths Question 10.
Solve the equation for x,y,z and t, if
\(2\begin{bmatrix} x & z \\ y & t \end{bmatrix}+3\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}=3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}\)
Solution:
\(2\begin{bmatrix} x & z \\ y & t \end{bmatrix}+3\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}=3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}\)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q10.1

Ex 3.2 Class 12 Maths Question 11.
If \(x\left[ \begin{matrix} 2 \\ 3 \end{matrix} \right] +y\left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] =\left[ \begin{matrix} 10 \\ 5 \end{matrix} \right] \) then find the values of x and y
Solution:
\(x\left[ \begin{matrix} 2 \\ 3 \end{matrix} \right] +y\left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] =\left[ \begin{matrix} 10 \\ 5 \end{matrix} \right] \)
=> \(\left[ \begin{matrix} 2x-y \\ 3x+y \end{matrix} \right] =\left[ \begin{matrix} 10 \\ 5 \end{matrix} \right] \)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q11.1

Ex 3.2 Class 12 Maths Question 12.
Given
\(3\begin{bmatrix} x & \quad y \\ z & \quad w \end{bmatrix}=\begin{bmatrix} x & \quad 6 \\ -1 & \quad 2w \end{bmatrix}+\begin{bmatrix} 4 & \quad x+y \\ z+w & 3 \end{bmatrix} \)
find the values of x,y,z and w.
Solution:
\(3\begin{bmatrix} x & \quad y \\ z & \quad w \end{bmatrix}=\begin{bmatrix} x & \quad 6 \\ -1 & \quad 2w \end{bmatrix}+\begin{bmatrix} 4 & \quad x+y \\ z+w & 3 \end{bmatrix} \)
=> \(\begin{bmatrix} 3x & \quad 3y \\ 3z & \quad 3w \end{bmatrix}=\begin{bmatrix} x+4 & \quad 6+x+y \\ -1+z+w & \quad 2w+3 \end{bmatrix}\)
=> 3x = x + 4 => x = 2
and 3y = 6 + x + y => y = 4
Also, 3w = 2w + 3 => w = 3
Again, 3z = – 1 + z + w
=> 2z = – 1 + 3
=> 2z = 2
=> z = 1
Hence x = 2 ,y = 4, z = 1, w = 3.

Ex 3.2 Class 12 Maths Question 13.
If F(x) = \(\left[ \begin{matrix} cosx & -sinx & 0 \\ sinx & cosx & 0 \\ 0 & 0 & 1 \end{matrix} \right] \)
then show that F(x).F(y) = F(x+y)
Solution:
F(x) = \(\left[ \begin{matrix} cosx & -sinx & 0 \\ sinx & cosx & 0 \\ 0 & 0 & 1 \end{matrix} \right] \)
∴ F(y) = \(\left[ \begin{matrix} cosy & -siny & 0 \\ siny & cosy & 0 \\ 0 & 0 & 1 \end{matrix} \right] \)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q13.1

Ex 3.2 Class 12 Maths Question 14.
Show that
\((i)\begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}\begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix} \)
\((ii)\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{matrix} \right] \left[ \begin{matrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{matrix} \right] \neq \left[ \begin{matrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{matrix} \right] \left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{matrix} \right] \)
Solution:
\((i)L.H.S=\begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}=\begin{bmatrix} 7 & 1 \\ 33 & 34 \end{bmatrix} \)
\(R.H.S=\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}\begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}=\begin{bmatrix} 16 & 5 \\ 39 & 25 \end{bmatrix} \)
L.H.S≠R.H.S
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q14.1

Ex 3.2 Class 12 Maths Question 15.
Find A² – 5A + 6I, if A = \(\left[ \begin{matrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{matrix} \right] \)
Solution:
A² – 5A + 6I = \(\left[ \begin{matrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{matrix} \right] \left[ \begin{matrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{matrix} \right] -5\left[ \begin{matrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{matrix} \right] +6\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] \)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q15.1

Ex 3.2 Class 12 Maths Question 16.
If A = \(\left[ \begin{matrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{matrix} \right] \) Prove that A³-6A²+7A+2I = 0
Solution:
We have
A² = A x A
= \(\left[ \begin{matrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{matrix} \right] \times \left[ \begin{matrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{matrix} \right] =\left[ \begin{matrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{matrix} \right] \)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q16.1

Ex 3.2 Class 12 Maths Question 17.
If \(A=\begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix},I=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\) then find k so that A²=kA-2I
Solution:
Given
\(A=\begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix},I=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
Required: To find the value of k
Now A²=kA-2I
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q17.1

Ex 3.2 Class 12 Maths Question 18.
If \(A=\begin{bmatrix} 0 & -tan\frac { \alpha }{ 2 } \\ tan\frac { \alpha }{ 2 } & 0 \end{bmatrix}\) and I is the identity matrix of order 2,show that
\(I+A=I-A\begin{bmatrix} cos\alpha & \quad -sin\alpha \\ sin\alpha & \quad cos\alpha \end{bmatrix}\)
Solution:
L.H.S=\(I+A=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}+\begin{bmatrix} 0 & -tan\frac { \alpha }{ 2 } \\ tan\frac { \alpha }{ 2 } & 0 \end{bmatrix}\)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q18.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q18.2
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q18.3

Ex 3.2 Class 12 Maths Question 19.
A trust has Rs 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year and second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bond if the trust fund obtains an annual total interest of
(a) Rs 1800
(b) Rs 2000
Solution:
Let Rs 30,000 be divided into two parts and Rs x and Rs (30,000-x)
Let it be represented by 1 x 2 matrix [x (30,000-x)]
Rate of interest is 005 and 007 per rupee.
It is denoted by the matrix R of order 2 x 1.
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q19.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q19.2

Ex 3.2 Class 12 Maths Question 20.
The book-shop of a particular school has 10 dozen Chemistry books, 8 dozen Physics books, 10 dozen Economics books. Their selling price are Rs 80, Rs 60 and Rs 40 each respectively. Find die total amount the book-shop will receive from selling all the books using matrix algebra.
Solution:
Number of Chemistry books = 10 dozen books
= 120 books
Number of Physics books = 8 dozen books = 96 books
Number of Economics books = 10 dozen books
= 120 books
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q20.1

Assuming X, Y, Z, W and P are the matrices of order 2 x n, 3 x k, 2 x p, n x 3 and p x k respectively. Choose the correct answer in Question 21 and 22.

Ex 3.2 Class 12 Maths Question 21.
The restrictions on n, k and p so that PY + WY will be defined are
(a) k = 3 ,p = n
(b) k is arbitrary,p = 2
(c) pis arbitrary, k = 3
(d) k = 2,p = 3
Solution:
Given : x2xn, y3xn, z2xp, wnx3, Ppxk
Now py +wy = Ppxk x y3+k x wnx3  x y3xk
Clearly, k = 3 and p = n
Hence, option (a) is correct p x 2.

Ex 3.2 Class 12 Maths Question 22.
If n = p, then the order of the matrix 7X – 5Z is:
(a) p x 2
(b) 2 x n
(c) n x 3
(d) p x n.
Solution:
7X – 5Z = 7X2xn – 5X2xp
∴ We can add two matrices if their order is same n = P
∴ Order of 7X – 5Z is 2 x n.
Hence, option (b) is correct 2 x n.

We hope the NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 help you. If you have any query regarding NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers
  • The Summer Of The Beautiful White Horse Answers
  • Job Application Letter class 12 Samples
  • Science Lab Manual Class 9
  • Letter to The Editor Class 12 Samples
  • Unseen Passage For Class 6 Answers
  • NCERT Solutions for Class 12 Hindi Core
  • Invitation and Replies Class 12 Examples
  • Advertisement Writing Class 11 Examples
  • Lab Manual Class 10 Science

Recent Posts

  • Understanding Diversity Question Answer Class 6 Social Science Civics Chapter 1 NCERT Solutions
  • Our Changing Earth Question Answer Class 7 Social Science Geography Chapter 3 NCERT Solutions
  • Inside Our Earth Question Answer Class 7 Social Science Geography Chapter 2 NCERT Solutions
  • Rulers and Buildings Question Answer Class 7 Social Science History Chapter 5 NCERT Solutions
  • On Equality Question Answer Class 7 Social Science Civics Chapter 1 NCERT Solutions
  • Role of the Government in Health Question Answer Class 7 Social Science Civics Chapter 2 NCERT Solutions
  • Vital Villages, Thriving Towns Question Answer Class 6 Social Science History Chapter 9 NCERT Solutions
  • New Empires and Kingdoms Question Answer Class 6 Social Science History Chapter 11 NCERT Solutions
  • The Delhi Sultans Question Answer Class 7 Social Science History Chapter 3 NCERT Solutions
  • The Mughal Empire Question Answer Class 7 Social Science History Chapter 4 NCERT Solutions
  • India: Climate Vegetation and Wildlife Question Answer Class 6 Social Science Geography Chapter 8 NCERT Solutions
  • Traders, Kings and Pilgrims Question Answer Class 6 Social Science History Chapter 10 NCERT Solutions
  • Environment Question Answer Class 7 Social Science Geography Chapter 1 NCERT Solutions
  • Understanding Advertising Question Answer Class 7 Social Science Civics Chapter 7 NCERT Solutions
  • The Making of Regional Cultures Question Answer Class 7 Social Science History Chapter 9 NCERT Solutions

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions