NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 are part of NCERT Solutions for Class 12 Maths . Here we have given NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4.
Board | CBSE |
Textbook | NCERT |
Class | Class 12 |
Subject | Maths |
Chapter | Chapter 3 |
Chapter Name | Matrices |
Exercise | Ex 3.4 |
Number of Questions Solved | 18 |
Category | NCERT Solutions |
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4
Using Elementary transformation, find the inverse each of matrices, if it exists in ques 1 to 17.
Ex 3.4 Class 12 Maths Question 1.
\(\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 2.
\(\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 3.
\(\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 4.
\(\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 5.
\(\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 6.
\(\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 7.
\(\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 8.
\(\begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 9.
\(\begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Ex 3.4 Class 12 Maths Question 10.
\(\begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}\)
Ex 3.4 Class 12 Maths Question 11.
\(\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 12.
\(\begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 13.
\(\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 14.
\(\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}\)
Solution:
Let \(A=\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}\)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 15.
\(\left[ \begin{matrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{matrix} \right] \)
Solution:
Let \(A=\left[ \begin{matrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{matrix} \right] \)
Ex 3.4 Class 12 Maths Question 16.
\(\left[ \begin{matrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 2 \end{matrix} \right] \)
Solution:
Let \(A=\left[ \begin{matrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 2 \end{matrix} \right] \)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 17.
\(\left[ \begin{matrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{matrix} \right] \)
Solution:
Let \(A=\left[ \begin{matrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{matrix} \right] \)
We know that
A = IA
Ex 3.4 Class 12 Maths Question 18.
Choose the correct answer in the following question:
Matrices A and B will be inverse of each other only if
(a) AB = BA
(b) AB = BA = 0
(c) AB = 0,BA = 1
(d) AB = BA = I
Solution:
Choice (d) is correct
i.e., AB = BA = I
We hope the NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 help you. If you have any query regarding NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4, drop a comment below and we will get back to you at the earliest.