NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2 are part of NCERT Solutions for Class 12 Maths. Here we have given NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2.
- Continuity and Differentiability Class 12 Ex 5.1
- Continuity and Differentiability Class 12 Ex 5.3
- Continuity and Differentiability Class 12 Ex 5.4
- Continuity and Differentiability Class 12 Ex 5.5
- Continuity and Differentiability Class 12 Ex 5.6
- Continuity and Differentiability Class 12 Ex 5.7
- Continuity and Differentiability Class 12 Ex 5.8
Board | CBSE |
Textbook | NCERT |
Class | Class 12 |
Subject | Maths |
Chapter | Chapter 5 |
Chapter Name | Continuity and Differentiability |
Exercise | Ex 5.2 |
Number of Questions Solved | 10 |
Category | NCERT Solutions |
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Exc 5.2
Differentiate the functions with respect to x in Questions 1 to 8.
Ex 5.2 Class 12 Maths Question 1.
sin(x² + 5)
Solution:
Let y = sin(x2 + 5),
put x² + 5 = t
y = sint
t = x²+5
\(\frac { dy }{ dx } =\frac { dy }{ dt } .\frac { dt }{ dx } \)
\(\frac { dy }{ dx } =cost.\frac { dt }{ dx } =cos({ x }^{ 2 }+5)\frac { d }{ dx } ({ x }^{ 2 }+5)\)
= cos (x² + 5) × 2x
= 2x cos (x² + 5)
Ex 5.2 Class 12 Maths Question 2.
cos (sin x)
Solution:
let y = cos (sin x)
put sinx = t
∴ y = cost,
t = sinx
∴\(\frac { dy }{ dx } =-sin\quad t,\frac { dt }{ dx } =cos\quad x \)
\(\frac { dy }{ dx } =\frac { dy }{ dt } .\frac { dt }{ dx } =(-sint)\times cosx\)
Putting the value of t, \(\frac { dy }{ dx } =-sin(sinx)\times cosx\)
\(\frac { dy }{ dx } =-[sin(sinx)]cosx\)
Ex 5.2 Class 12 Maths Question 3.
sin(ax+b)
Solution:
let = sin(ax+b)
put ax+bx = t
∴ y = sint
t = ax+b
\(\frac { dy }{ dt } =cost,\frac { dt }{ dx } =\frac { d }{ dx } (ax+b)=a\)
\(Now\frac { dy }{ dx } =\frac { dy }{ dt } .\frac { dt }{ dx } =cost\times a=acos\quad t\)
\(\frac { dy }{ dx } =acos(ax+b)\)
Ex 5.2 Class 12 Maths Question 4.
sec(tan(√x))
Solution:
let y = sec(tan(√x))
by chain rule
\(\frac { dy }{ dx } =sec(tan\sqrt { x } )tan(tan\sqrt { x } )\frac { d }{ dx } (tan\sqrt { x } )\)
\(\frac { dy }{ dx } =sec(tan\sqrt { x } ).tan(tan\sqrt { x } ){ sec }^{ 2 }\sqrt { x } .\frac { 1 }{ 2\sqrt { x } } \)
Ex 5.2 Class 12 Maths Question 5.
\(\\ \frac { sin(ax+b) }{ cos(cx+d) } \)
Solution:
y = \(\\ \frac { sin(ax+b) }{ cos(cx+d) } \) = \(\\ \frac { v }{ u } \)
u = sin(ax+b)
Ex 5.2 Class 12 Maths Question 6.
cos x³ . sin²(x5) = y(say)
Solution:
Let u = cos x³ and v = sin² x5,
put x³ = t
Ex 5.2 Class 12 Maths Question 7.
\(2\sqrt { cot({ x }^{ 2 }) } =y(say)\)
Solution:
\(2\sqrt { cot({ x }^{ 2 }) } =y(say)\)
Ex 5.2 Class 12 Maths Question 8.
cos(√x) = y(say)
Solution:
cos(√x) = y(say)
\(\frac { dy }{ dx } =\frac { d }{ dx } cos\left( \sqrt { x } \right) =-sin\sqrt { x } .\frac { d\sqrt { x } }{ dx } \)
\(=-sin\sqrt { x } .\frac { 1 }{ 2 } { (x) }^{ -\frac { 1 }{ 2 } }=\frac { -sin\sqrt { x } }{ 2\sqrt { x } } \)
Ex 5.2 Class 12 Maths Question 9.
Prove that the function f given by f (x) = |x – 1|,x ∈ R is not differential at x = 1.
Solution:
The given function may be written as
\(f(x)=\begin{cases} x-1,\quad if\quad x\ge 1 \\ 1-x,\quad if\quad x<1 \end{cases} \)
\(R.H.D\quad at\quad x=1\quad =\underset { h\rightarrow 0 }{ lim } \frac { f(1+h)-f(1) }{ h } \)
Ex 5.2 Class 12 Maths Question 10.
Prove that the greatest integer function defined by f (x)=[x], 0 < x < 3 is not differential at x = 1 and x = 2.
Solution:
(i) At x = 1
\(R.H.D=\underset { h\rightarrow 0 }{ lim } \frac { f(1+h)-f(1) }{ h } \)
We hope the NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2 help you. If you have any query regarding NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2, drop a comment below and we will get back to you at the earliest.