• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5.

  • Polynomials Class 9 Ex 2.1
  • Polynomials Class 9 Ex 2.2
  • Polynomials Class 9 Ex 2.3
  • Polynomials Class 9 Ex 2.4
  • Polynomials Class 9 Ex 2.5
Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 2
Chapter Name Polynomials
Exercise  Ex 2.5
Number of Questions Solved 16
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5

Ex 2.5 Class 9 Maths Question 1.
Use suitable identities to find the following products:
(i) (x+4)(x+10)
(ii) (x+8)(x-10)
(iii) (3x+4)(3x+2x)
(iv) (\( { y }^{ 2 }+\cfrac { 3 }{ 2 }\))( \( { y }^{ 2 }-\cfrac { 3 }{ 2 }\))
(v) (3-2x)(3+2x)
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5.1

Ex 2.5 Class 9 Maths Question 2.
Evaluate the following products without multiplying directly:
(i) 103 x 107
(ii) 95 x 96
(iii) 104 x 96
Solution:
(i) 103 x 107 = (100 + 3) (100 + 7)
= (100)2 + (3 + 7) (100) + 3 x 7
= 100 x 100 + (10)(100) + 21
= 10000 +1000 + 21 = 11021

(ii) 95 x 96 = (100 – 5) (100 – 4)
= (100)2 + (-5 – 4)(100) + (-5)(-4) – 100 x 100 + (-9)(100) + 20
= 10000 – 900 + 20 = 9120

(iii) 104 x 96 = (100 + 4)(100 – 4)
= (100)2 – (4)2
= 10000 -16
= 9984

Ex 2.5 Class 9 Maths Question 3.
Factorise the following using appropriate identities :
(i) 9x2 + 6xy + y2
(ii) 4y2 – 4y +1
(iii) x2–\(\cfrac { { y }^{ 2 } }{ 100 }\)
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5.2

Ex 2.5 Class 9 Maths Question 4.
Expand each of the following, using suitable identities :
(i) (x + 2y + 4z)2
(ii) (2x -y +z)2
(iii) (-2x + 3y + 2z)2
(iv) (3a – 7b -c)2
(v) (-2x + 5y – 3z)2
(vi) \((\cfrac { 1 }{ 4 } a-\cfrac { 1 }{ 2 } b+1)\)2
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5.3

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5.4

Ex 2.5 Class 9 Maths Question 5.
Factorise:
(i) 4x2 + 9y2 + I622 + 12xy – 24yz -16xz
(ii) 2x2+ y2 + 822 – 2\( \sqrt { 2 }\)xy + 4\( \sqrt { 2 }\)yz – 8×2
Solution:
(i) 4x2 +9y2 +16z2 +12xy-24yz-16xz
= (2x)2 + (3y)2 + (-4z)2 + 2(2x)(3y) + 2(3y)(-4z) + 2(-4z)(2x)
= (2x +3y – 4z)2

(ii) 2x2 + y2 + 8z2 – 2\( \sqrt { 2 }\)xy + 4\( \sqrt { 2 }\)yz-8xz
= (-a\( \sqrt { 2 }\)x)2 + (y)2 + (2\( \sqrt { 2 }\)z)2 + (2 – \( \sqrt { 2 }\)x) (y) + 2(y) (2\( \sqrt { 2 }\)z) + 2(2\( \sqrt { 2 }\)z)(-\( \sqrt { 2 }\)x)
= (-\( \sqrt { 2 }\)x + y + 2\( \sqrt { 2 }\)z)2

Ex 2.5 Class 9 Maths Question 6.
Write the following cubes in expanded form :
(i) (2x+1)3
(ii) (2a-3b)3
(iii) \((\cfrac { 3 }{ 2 } x+1)\)3
(iv) \((x-\cfrac { 2 }{ 3 } y)\)3
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5.5

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5.6
Ex 2.5 Class 9 Maths Question 7.
Evaluate the following using suitable identities :
(i) (99)3
(ii) (102)3
(iii) (998)3
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5.7

Ex 2.5 Class 9 Maths Question 8.
Factorise each of the following:
(i) 8a3 + b3 + 12a26 + 6ab2
(ii) 8a3 – b3 -12a26 + 6a62
(iii) 27 – 125a3 – 135 a + 225 a2 64a3
(iv) \(27{ p }^{ 3 }-\cfrac { 1 }{ 216 } -\cfrac { 9 }{ 2 } { p }^{ 2 }+\cfrac { 1 }{ 4 } p\)
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5.8

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5.9
Ex 2.5 Class 9 Maths Question 9.
Verify:
(1) x3 + y3 = Or + y)(x2-xy + y2)
(ii) x3-y3 = (x-y)(x2 + xy + y2)
Solution:
(i) We know that,
(x + y)3 = x3 + y3 + 3xy(x + y)
=> x3 + y3 = (x + y)3 -3xy(x + y)
= (x + y)[(x + y)2 -3xy]
= (x + y) [x2 + y2 + 2xy – 3x] = (x + y)[x2 + y2 – xy]
= RHS  Hence proved.

(ii) We know that, (x – y)3 = x3 – y3 -3xy(x – y)
=>x3 – y3 = (x – y)3 + 3xy(x – y)
= (x-y)[(x – y)2 +3xy]
= (x -y)[x2 + y2 -2xy + 3xy]
= (x — y)[x2 + y2 + xy]
= RHS  Hence proved.

Ex 2.5 Class 9 Maths Question 10.
Factorise each of the following:
(i) 27y3 + 125z3
(ii) 64m3 -343n3 [Hint: See question 9]
Solution:
(i) 27 y3 +125z3 = (3y)3 + (5z)3
= (3y + 5z)[(3y)2 – (3y)(5z) + (5z)2]
= (3y + 5z) (9 y2 – 15yz + 25z2)

(ii) 64m3 -343n3 = (4m)3 -(7n)3
= (4m-7n)[(4m)2 + (4m)(7n) + (7n)2]
= (4m – 7n)[16m2 + 28mn + 49n2]

Ex 2.5 Class 9 Maths Question 11.
Factorise :
27x3 + y3 + z3 – 9xyz
Solution:
27x3 +y3 +z3 -9xyz = (3x)3 + y3 +z3 -3(3x)(y)(z)
= (3x + y + z)[(3x)2 + y2 + z2 – (3x)y – yz -z(3x)]
= (3x + y + z)(9x2 + y2 + z2 -3xy – yz -3zx)

Ex 2.5 Class 9 Maths Question 12.
Verify that
x3 + y3 +z3 -3xyz = \(\cfrac { 1 }{ 2 } \) (x + y + z)[(x -y)2 +(y-z)2 +(z-x)2]
Solution:
We have, x3 + y3 + z3 – 3xyz
= (x + y + z) [x2 + y2 + z2 – xy – yz – zx]
= \(\frac { 1 }{ 2 } \)(x + y+ z)[2x2 +2y2 +2z2 -2xy-2yz -2zx]
= \(\frac { 1 }{ 2 } \)(x + y + z)[x2 + x2 + y2 + y2 + z2 + z2 -2xy-2yz-2zx]
= \(\frac { 1 }{ 2 } \)(x + y + z)[x2 + y2 – 2xy + y2 + z2 -2yz + z2 + x2 – 2zx]
= \(\frac { 1 }{ 2 } \)(x + y + z)[(x-y)2 + (y-z)2 +(z-x)2]

Ex 2.5 Class 9 Maths Question 13.
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Solution:
We know that,
x3 +y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz-zx)
= 0(x2 + y2 + z2 – xy- yz-zx) (∵ x + y + z = 0 given)
= 0
=> x3 + y3 + z3 = 3xyz        Hence proved.

Ex 2.5 Class 9 Maths Question 14.
Without actually calculating the cubes, find the value of each of the following: 
(i) (-12)3 + (7)3 + (5)3
(ii) (28)3 + (-15)3 + (-13)3.
Solution:
(i) We know that, x3 + y3 + z3 – 3xyz
= (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
Also, we know that, if
x + y + z = 0
Then, x3 + y3 +z3 = 3 xyz
Given expression is (-12)3 + (7)3 + (5)3.
Here,            -12 + 7 + 5=0
∴ (-12)3 + (7)3 + (5)3 = 3 x (-12) x 7 x 5 = -1260

(ii)
Given expression is (28)3 + (-15)3 + (-13)3
Here, 28 + (-15) + (-13) = 28 -15-13 = 0
∴  (28)3 + (-15)3 + (-13)3 = 3 x (28) x (-15) x (-13) = 16380

Ex 2.5 Class 9 Maths Question 15.
Give possible expressions for the length and the breadth of each of the following rectangles, in which their areas are given :
(i) Area = 25a2 – 35a + 12
(ii) Area = 35y2 + 13y – 12.
Solution:
(i) We have,
Area of rectangle = 25a2 – 35a +12 [by splitting the middle term]
= 25a2 -20a-15a+12
= 5a(5a – 4) – 3(5a – 4)
= (5a-4)(5a-3)
Hence, possible expression for length = (5a – 3) and possible expression for breadth = (5a – 4)

(ii) We have,
Area of rectangle = 35y+ 13y -12
= 35y2 + (28 – 15)y -12
= 35y2 + 28y-15y-12
= (35y2 +28y)-(15y + 12)
= 7y(5y + 4) – 3(5y + 4)
= (7y – 3) (5y + 4)

Ex 2.5 Class 9 Maths Question 16.
What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
(i) Volume = 3x2 – 12x
(ii) Volume = 12ky2 + 8ky – 20k.
Solution:
(i) We have,
Volume of cuboid = 3x2 -12x = 3x(x – 4)
So, the possible expressions for the dimensions of the cuboids are 3, x and x – 4.
[∵ volume of cuboid = length x breadth x height]

(ii) We have,
Volume of cuboid = 12ky2 + 8ky – 20k = 12ky2 + (20 -12)ky – 20k [by splitting the middle term]
= 12ky2 + 20 ky – 12ky – 20 k = 4ky(3y + 5) – 4k(3y + 5) = (3y + 5)(4ky – 4k)
= (3y + 5)4k(y -1) = 4k(3y + 5)(y -1)
So, the possible expressions for the dimensions of the cuboid are 4 k, 3y + 5 and y -1.

We hope the NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • Decimals
  • CBSE Class 12 English Letter Writing – Letters Of Application for Jobs
  • NCERT Exemplar Problems Class 7 Maths – Exponents and Powers
  • NCERT Exemplar Class 7 Maths Practical Geometry Symmetry and Visualising Solid Shapes
  • NCERT Exemplar Class 7 Maths Algebraic Expression
  • NCERT Solutions for Class 11 Maths Chapter 8 Binomial Theorem Ex 8.2
  • NCERT Exemplar Problems Class 7 Maths – Perimeter and Area
  • NEET Physics Chapter Wise Mock Test – General properties of matter
  • ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 6 Factorization MCQS
  • Division of a Polynomial by a Monomial
  • Multiplication-Decimal Numbers
  • Proper, Improper and Mixed fractions
  • NCERT Exemplar Class 7 Maths Rational Numbers
  • Fractions
  • NCERT Exemplar Class 10 Maths Solutions Chapter 13 Statistics and Probability

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
cbse ncert
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions