• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 are part of NCERT Solutions for Class 12 Maths. Here we have given NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10.

  • Integrals Class 12 Ex 7.1
  • Integrals Class 12 Ex 7.2
  • Integrals Class 12 Ex 7.3
  • Integrals Class 12 Ex 7.4
  • Integrals Class 12 Ex 7.5
  • Integrals Class 12 Ex 7.6
  • Integrals Class 12 Ex 7.7
  • Integrals Class 12 Ex 7.8
  • Integrals Class 12 Ex 7.9
  • Integrals Class 12 Ex 7.11
Board CBSE
Textbook NCERT
Class Class 12
Subject Maths
Chapter Chapter 7
Chapter Name Integrals
Exercise Ex 7.10
Number of Questions Solved 10
Category NCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10

Evaluate the integrals in Exercises 1 to 8 using substitution.

Ex 7.10 Class 12 Maths Question 1.
\(\int _{ 0 }^{ 1 }{ \frac { x }{ { x }^{ 2 }+1 } } dx=I\)
Solution:
Let x² + 1 = t
⇒2xdx = dt
when x = 0, t = 1 and when x = 1, t = 2
\(\therefore I=\frac { 1 }{ 2 } \int _{ 0 }^{ 1 }{ \frac { dt }{ t } } ={ \left[ \frac { 1 }{ 2logt } \right] }_{ 1 }^{ 2 }\quad =\frac { 1 }{ 2 } log2\)

Ex 7.10 Class 12 Maths Question 2.
\(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \sqrt { sin\phi } { cos }^{ 5 }\phi d\phi =I } \)
Solution:
\(I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \sqrt { sin\phi } { (1-{ sin }^{ 2 }) }^{ 2 }cos\phi d\phi } \)
put sinφ = t,so that cosφdφ = dt
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 Q2.1

Ex 7.10 Class 12 Maths Question 3.
\(\int _{ 0 }^{ 1 }{ { sin }^{ -1 } } \left( \frac { 2x }{ 1+{ x }^{ 2 } } \right) dx=I\)
Solution:
let x = tanθ =>dx = sec²θ dθ
when x = 0 => θ = 0
and when x = 1 => \(\theta \frac { \pi }{ 4 } \)
\(\frac { 1 }{ 2 }\)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 Q3.1

Ex 7.10 Class 12 Maths Question 4.
\(\int _{ 0 }^{ 2 }{ x\sqrt { x+2 } } dx=I(say)(put\quad x+2={ t }^{ 2 })\)
Solution:
let x+2 = t =>dx = dt
when x = 0,t = 2 and when x = 2, t = 4
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 Q4.1

Ex 7.10 Class 12 Maths Question 5.
\(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { sinx\quad dx }{ 1+{ cos }^{ 2 }x } =I } \)
Solution:
put cosx = t
so that -sinx dx = dt
when x = 0, t = 1; when \(x=\frac { \pi }{ 2 }\), t = 0
\(\therefore I=\int _{ 1 }^{ 0 }{ \frac { -dt }{ 1+{ t }^{ 2 } } =-{ \left[ { tan }^{ -1 }t \right] }_{ 1 }^{ 0 } } =\frac { \pi }{ 4 } \)

Ex 7.10 Class 12 Maths Question 6.
\(\int _{ 0 }^{ 2 }{ \frac { dx }{ x+4-{ x }^{ 2 } } =I } \)
Solution:
\(\int _{ 0 }^{ 2 }{ \frac { dx }{ x+4-{ x }^{ 2 } } =I } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 Q6.1

Ex 7.10 Class 12 Maths Question 7.
\(\int _{ -1 }^{ 1 }{ \frac { dx }{ { x }^{ 2 }+2x+5 } =I } \)
Solution:
\(I=\int _{ -1 }^{ 1 }{ \frac { dx }{ { (x+1) }^{ 2 }+{ 2 }^{ 2 } } } =\frac { 1 }{ 2 } { \left[ { tan }^{ -1 }\frac { x+1 }{ 2 } \right] }_{ -1 }^{ 1 }\quad =\frac { \pi }{ 8 } \)

Ex 7.10 Class 12 Maths Question 8.
\(\int _{ 1 }^{ 2 }{ \left[ \frac { 1 }{ x } -\frac { 1 }{ { 2x }^{ 2 } } \right] { e }^{ 2x }dx } =I\)
Solution:
let 2x = t ⇒ 2dx = dt
when x = 1, t = 2 and when x = 2, t = 4
\(I=\int _{ 2 }^{ 4 }{ e } ^{ t }\left( \frac { 1 }{ t } -\frac { 1 }{ { t }^{ 2 } } \right) dt\quad ={ e }^{ t }{ \left[ \frac { 1 }{ t } \right] }_{ 2 }^{ 4 }\quad =\frac { e^{ 2 } }{ 2 } \left[ \frac { { e }^{ 2 } }{ 2 } -1 \right] \)

Choose the correct answer in Exercises 9 and 10

Ex 7.10 Class 12 Maths Question 9.
The value of integral \(\int _{ \frac { 1 }{ 3 } }^{ 1 }{ \frac { { { (x-x }^{ 3 }) }^{ \frac { 1 }{ 3 } } }{ { x }^{ 4 } } dx } \) is
(a) 6
(b) 0
(c) 3
(d) 4
Solution:
(a) let I = \(\int _{ \frac { 1 }{ 3 } }^{ 1 }{ \frac { { { (x-x }^{ 3 }) }^{ \frac { 1 }{ 3 } } }{ { x }^{ 4 } } dx } \quad =\int _{ \frac { 1 }{ 3 } }^{ 1 }{ \frac { { x }^{ \frac { 1 }{ 3 } }(1-{ x }^{ 2 })^{ \frac { 1 }{ 3 } } }{ { x }^{ 4 } } dx } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 Q9.1

Ex 7.10 Class 12 Maths Question 10.
\(If\quad f(x)=\int _{ 0 }^{ x }{ tsint,\quad then\quad { f }^{ \prime }(x)\quad is } \)
(a) cosx+xsinx
(b) xsinx
(c) xcosx
(d) sinx+xcosx
Solution:
(b) \(f(x)=\int _{ 0 }^{ x }{ tsint\quad dt } \)
\(=t(-cost)-\int { 1{ \left[ (-cost)dt \right] }_{ 0 }^{ x } } \)
=-x cox+sinx

We hope the NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 help you. If you have any query regarding NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • Fractions: Dividing Fractions
  • Fractions: Multiplying Fractions
  • Fractions: Subtracting Fractions When the Denominators are the Same
  • Numerator and Denominator
  • Division of a Polynomial by a Polynomial
  • Subtraction of Algebraic Expressions by Row or Horizontal Method
  • Division of Rational Numbers
  • Subtraction of Algebraic Expressions
  • Multiplication of Two Binomials
  • Polygons
  • Converting Mixed numbers into Improper fractions
  • Converting Improper fractions into Mixed numbers
  • Addition of Algebraic Expressions
  • Percentage
  • Curves

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
cbse ncert
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions