• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 are part of NCERT Solutions for Class 12 Maths. Here we have given NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4.

  • Integrals Class 12 Ex 7.1
  • Integrals Class 12 Ex 7.2
  • Integrals Class 12 Ex 7.3
  • Integrals Class 12 Ex 7.5
  • Integrals Class 12 Ex 7.6
  • Integrals Class 12 Ex 7.7
  • Integrals Class 12 Ex 7.8
  • Integrals Class 12 Ex 7.9
  • Integrals Class 12 Ex 7.10
  • Integrals Class 12 Ex 7.11
Board CBSE
Textbook NCERT
Class Class 12
Subject Maths
Chapter Chapter 7
Chapter Name Integrals
Exercise Ex 7.4
Number of Questions Solved 25
Category NCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Integrate the functions in exercises 1 to 23

Ex 7.4 Class 12 Maths Question 1.
\(\frac { { 3x }^{ 2 } }{ { x }^{ 6 }+1 } \)
Solution:
Let x3 = t ⇒ 3x²dx = dt
\(\int { \frac { { 3x }^{ 2 } }{ { x }^{ 6 }+1 } dx } =\int { \frac { dt }{ { t }^{ 2 }+1 } } ={ tan }^{ -1 }t+c\)
= tan-1 (x3)+c

Ex 7.4 Class 12 Maths Question 2.
\(\frac { 1 }{ \sqrt { 1+{ 4x }^{ 2 } } } \)
Solution:
\(\frac { 1 }{ 2 } \int { \frac { dx }{ \sqrt { \frac { 1 }{ 4 } +{ x }^{ 2 } } } } =\frac { 1 }{ 2 } \int { \frac { dx }{ \sqrt { { \left( \frac { 1 }{ 2 } \right) }^{ 2 }+{ x }^{ 2 } } } } \)
\(=\frac { 1 }{ 2 } log\left| 2x+\sqrt { 1+{ 4x }^{ 2 } } \right| +c \)

Ex 7.4 Class 12 Maths Question 3.
\(\frac { 1 }{ \sqrt { { (2-x) }^{ 2 }+1 } } \)
Solution:
put (2-x)=t
so that -dx=dt
⇒ dx=-dt
\(\int { \frac { dx }{ \sqrt { { (2-x) }^{ 2 }+1 } } } =-\int { \frac { dt }{ \sqrt { { t }^{ 2 }+1 } } } =-log|t+\sqrt { { t }^{ 2 }+1 } |+c\)
\(=log\left| \frac { 1 }{ (2-x)+\sqrt { { x }^{ 2 }-4x+5 } } \right| +c\)

Ex 7.4 Class 12 Maths Question 4.
\(\frac { 1 }{ \sqrt { 9-{ 25x }^{ 2 } } } \)
Solution:
\(\int { \frac { dx }{ \sqrt { 9-{ 25x }^{ 2 } } } } =\frac { 1 }{ 5 } \int { \frac { dx }{ \sqrt { { \left( \frac { 3 }{ 5 } \right) }^{ 2 }-{ x }^{ 2 } } } } \)
\(=\frac { 1 }{ 5 } { sin }^{ -1 }\left( \frac { x }{ \frac { 3 }{ 5 } } \right) +c\quad =\frac { 1 }{ 5 } { sin }^{ -1 }\left( \frac { 5x }{ 3 } \right) +c \)

Ex 7.4 Class 12 Maths Question 5.
\(\frac { 3x }{ 1+{ 2x }^{ 4 } } \)
Solution:
Put x²=t,so that 2x dx=dt
⇒x dx = \(\frac { dt }{ 2 }\)
\(\therefore \int { \frac { 3x }{ 1+{ 2x }^{ 4 } } dx } =\frac { 1 }{ 2 } \int { \frac { dt }{ 1+{ 2t }^{ 2 } } } =\frac { 3 }{ 4 } \int { \frac { dt }{ { \left( \frac { 1 }{ \sqrt { 2 } } \right) }^{ 2 }+{ t }^{ 2 } } } \)
\(=\frac { 3 }{ 2\sqrt { 2 } } { tan }^{ -1 }(\sqrt { 2t } )+c\quad =\frac { 3 }{ 2\sqrt { 2 } } { tan }^{ -1 }(\sqrt { { 2x }^{ 2 } } )+c \)

Ex 7.4 Class 12 Maths Question 6.
\(\frac { { x }^{ 2 } }{ 1-{ x }^{ 6 } } \)
Solution:
put x3 = t,so that 3x²dx = dt
\(\int { \frac { { x }^{ 2 } }{ 1-{ x }^{ 6 } } dx } \quad =\frac { 1 }{ 3 } \int { \frac { dt }{ 1-{ t }^{ 2 } } \quad =\frac { 1 }{ 6 } log } \left| \frac { 1+t }{ 1-t } \right| +c\)
\(=\frac { 1 }{ 6 } log\left| \frac { 1+{ x }^{ 3 } }{ 1-{ x }^{ 3 } } \right| +c\)

Ex 7.4 Class 12 Maths Question 7.
\(\frac { x-1 }{ \sqrt { { x }^{ 2 }-1 } } \)
Solution:
\(I=\int { \frac { x-1 }{ \sqrt { { x }^{ 2 }-1 } } dx } -\int { \frac { 1 }{ \sqrt { { x }^{ 2 }-1 } } dx } ,I={ I }_{ 1 }-{ I }_{ 2 }\)
put x²-1 = t,so that 2x dx = dt
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 Q7.1

Ex 7.4 Class 12 Maths Question 8.
\(\frac { { x }^{ 2 } }{ \sqrt { { x }^{ 6 }+{ a }^{ 6 } } } \)
Solution:
put x3 = t
so that 3x2dx = dt
\(I=\frac { 1 }{ 3 } \int { \frac { dt }{ { t }^{ 2 }+{ { (a }^{ 3 }) }^{ 2 } } =\frac { 1 }{ 3 } log\left| t+\sqrt { { t }^{ 2 }+{ a }^{ 6 } } \right| +c } \)
\(=\frac { 1 }{ 3 } log|{ x }^{ 3 }+\sqrt { { a }^{ 6 }+{ x }^{ 6 } } |+c \)

Ex 7.4 Class 12 Maths Question 9.
\(\frac { { sec }^{ 2 }x }{ \sqrt { { tan }^{ 2 }x+4 } } \)
Solution:
let tanx = t
sec x²dx = dt
\(I=\int { \frac { dt }{ \sqrt { { t }^{ 2 }+{ (2) }^{ 2 } } } } =log|t+\sqrt { { t }^{ 2 }+4 } |+c\)
\(=log|tanx+\sqrt { { tan }^{ 2 }x+4 } |+c\)

Ex 7.4 Class 12 Maths Question 10.
\(\frac { 1 }{ \sqrt { { x }^{ 2 }+2x+2 } } \)
Solution:
\(\int { \frac { 1 }{ \sqrt { { x }^{ 2 }+2x+2 } } dx } =\int { \frac { dx }{ \sqrt { { (x+1) }^{ 2 }+1 } } } \)
\(=log|(x+1)+\sqrt { { x }^{ 2 }+2x+2 } |+c \)

Ex 7.4 Class 12 Maths Question 11.
\(\frac { 1 }{ { 9x }^{ 2 }+6x+5 } \)
Solution:
\(\int { \frac { 1 }{ { 9x }^{ 2 }+6x+5 } } =\frac { 1 }{ 9 } \int { \frac { dx }{ { \left( x+\frac { 1 }{ 3 } \right) }^{ 2 }{ +\left( \frac { 2 }{ 3 } \right) }^{ 2 } } } \)
\(=\frac { 1 }{ 6 } { tan }^{ -1 }\left( \frac { 3x+1 }{ 2 } \right) +c\)

Ex 7.4 Class 12 Maths Question 12.
\(\frac { 1 }{ \sqrt { 7-6x-{ x }^{ 2 } } } \)
Solution:
\(I=\int { \frac { dx }{ \sqrt { { 4 }^{ 2 }-{ (x+3) }^{ 2 } } } } \quad ={ sin }^{ -1 }\left( \frac { x+3 }{ 4 } \right) +c\)

Ex 7.4 Class 12 Maths Question 13.
\(\frac { 1 }{ \sqrt { (x-1)(x-2) } } \)
Solution:
\(\int { \frac { 1 }{ \sqrt { (x-1)(x-2) } } dx } =\int { \frac { dx }{ \sqrt { { \left( x-\frac { 3 }{ 2 } \right) }^{ 2 }-{ \left( \frac { 1 }{ 2 } \right) }^{ 2 } } } } \)
\(=log\left| x-\frac { 3 }{ 2 } +\sqrt { { x }^{ 2 }-3x+2 } \right| +c\)

Ex 7.4 Class 12 Maths Question 14.
\(\frac { 1 }{ \sqrt { 8+3x-{ x }^{ 2 } } } \)
Solution:
\(\int { \frac { dx }{ \sqrt { 8+3x-{ x }^{ 2 } } } } =\int { \frac { dx }{ \sqrt { 8-\left( { x }^{ 2 }-3x \right) } } } \)
\(=\int { \frac { dx }{ \sqrt { { \left( \frac { \sqrt { 41 } }{ 2 } \right) }^{ 2 }-{ \left( x-\frac { 3 }{ 2 } \right) }^{ 2 } } } } \quad ={ sin }^{ -1 }\left( \frac { 2x-3 }{ \sqrt { 41 } } \right) +c \)

Ex 7.4 Class 12 Maths Question 15.
\(\frac { 1 }{ \sqrt { (x-a)(x-b) } } \)
Solution:
\(\int { \frac { dx }{ \sqrt { (x-a)(x-b) } } } =\int { \frac { dx }{ { \left( x-\frac { a+b }{ 2 } \right) }^{ 2 }-{ \left( \frac { a-b }{ 2 } \right) }^{ 2 } } } \)
\(=log\left| \left( x-\frac { a+b }{ 2 } \right) +\sqrt { (x-a)(x-b) } \right| +c \)

Ex 7.4 Class 12 Maths Question 16.
\(\frac { 4x+1 }{ \sqrt { { 2x }^{ 2 }+x-3 } } \)
Solution:
\(let\quad I=\int { \frac { 4x+1 }{ \sqrt { { 2x }^{ 2 }+x-3 } } } dx\)
put 2x²+x-3=t
so that (4x+1)dx=dt
\(let\quad I=\int { \frac { 4x+1 }{ \sqrt { { 2x }^{ 2 }+x-3 } } } dx\)
\(\therefore I=\int { \frac { dt }{ \sqrt { t } } } ={ 2t }^{ \frac { 1 }{ 2 } }+c\quad =2\sqrt { { 2x }^{ 2 }+x-3 } +c\)

Ex 7.4 Class 12 Maths Question 17.
\(\frac { x+2 }{ \sqrt { { x }^{ 2 }-1 } } \)
Solution:
\(\int { \frac { x+2 }{ \sqrt { { x }^{ 2 }-1 } } dx } \quad =\int { \frac { x }{ \sqrt { { x }^{ 2 }-1 } } dx } +\int { \frac { 2 }{ \sqrt { { x }^{ 2 }-1 } } dx } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 Q17.1

Ex 7.4 Class 12 Maths Question 18.
\(\frac { 5x-2 }{ 1+2x+{ 3x }^{ 2 } } \)
Solution:
put 5x-2=A\(\frac { d }{ dx }\)(1+2x+3x²)+B
⇒ 6A=5, A=\(\frac { 5 }{ 6 }-2=2A+B\), B=\(-\frac { 11 }{ 3 }\)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 Q18.1

Ex 7.4 Class 12 Maths Question 19.
\(\frac { 6x+7 }{ \sqrt { (x-5)(x-4) } } \)
Solution:
\(\int { \frac { 6x+7 }{ \sqrt { (x-5)(x-4) } } dx } =\int { \frac { (6x+7)dx }{ \sqrt { { x }^{ 2 }-9x+20 } } } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 Q19.1

Ex 7.4 Class 12 Maths Question 20.
\(\frac { x+2 }{ \sqrt { 4x-{ x }^{ 2 } } } \)
Solution:
\(I=\int { \frac { x-2 }{ \sqrt { 4-{ (x-2) }^{ 2 } } } dx+4\int { \frac { dx }{ \sqrt { 4-{ (x-2) }^{ 2 } } } } } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 Q20.1

Ex 7.4 Class 12 Maths Question 21.
\(\frac { x+2 }{ \sqrt { { x }^{ 2 }+2x+3 } } \)
Solution:
\(I=\frac { 1 }{ 2 } \int { \frac { 2x+2 }{ \sqrt { { x }^{ 2 }+2x+3 } } dx } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 Q21.1

Ex 7.4 Class 12 Maths Question 22.
\(\frac { x+3 }{ { x }^{ 2 }-2x-5 } \)
Solution:
\(I=\frac { 1 }{ 2 } \int { \frac { 2x-2 }{ { x }^{ 2 }-2x-5 } dx } +\int { \frac { dx }{ { x }^{ 2 }-2x-5 } } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 Q22.1

Ex 7.4 Class 12 Maths Question 23.
\(\frac { 5x+3 }{ \sqrt { { x }^{ 2 }+4x+10 } } \)
Solution:
\(I=\int { \frac { \frac { 5 }{ 2 } (2x+4)+(3-10) }{ \sqrt { { x }^{ 2 }+4x+10 } } dx } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 Q23.1

Ex 7.4 Class 12 Maths Question 24.
\(\int { \frac { dx }{ { x }^{ 2 }+2x+2 } equals } \)
(a) xtan-1(x+1)+c
(b) (x+1)tan-1x+c
(c) tan-1(x+1)+c
(d) tan-1x+c
Solution:
(b) \(let\quad I=\int { \frac { dx }{ { x }^{ 2 }+2x+2 } } =\int { \frac { dx }{ (x+1)^{ 2 }+1 } } \)
= (x+1)tan-1x+c

Ex 7.4 Class 12 Maths Question 25.
\(\int { \frac { dx }{ \sqrt { 9x-{ 4x }^{ 2 } } } equals } \)
(a) \(\frac { 1 }{ 9 } { sin }^{ -1 }\left( \frac { 9x-8 }{ 8 } \right) +c\)
(b) \(\frac { 1 }{ 2 } { sin }^{ -1 }\left( \frac { 8x-9 }{ 9 } \right) +c\)
(c) \(\frac { 1 }{ 3 } { sin }^{ -1 }\left( \frac { 9x-8 }{ 8 } \right) +c\)
(d) \({ sin }^{ -1 }\left( \frac { 9x-8 }{ 9 } \right) +c\)
Solution:
(b) \(\int { \frac { dx }{ \sqrt { 9x-{ 4x }^{ 2 } } } } =\frac { 1 }{ 2 } \left[ \frac { dx }{ \sqrt { \left( \frac { 9 }{ 8 } \right) ^{ 2 }-\left[ { x }^{ 2 }-{ \frac { 9 }{ 4 } }x+\left( \frac { 9 }{ 8 } \right) ^{ 2 } \right] } } \right] \)
\(\frac { 1 }{ 2 } { sin }^{ -1 }\left( \frac { 8x-9 }{ 9 } \right) +c\)

We hope the NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 help you. If you have any query regarding NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • Least common multiple of polynomials
  • On finding the number of instalments in an instalment buying scheme
  • On finding the monthly instalment in instalment buying scheme
  • On finding the rate of interest charged under the instalment buying scheme
  • Equation Basics
  • Solving Equations
  • On finding the number of instalments
  • On finding the value of each instalment
  • Present value of Instalments
  • Square Roots Of Perfect Squares By the Method of Long Division
  • Present value calculation
  • Factorization Of Algebraic Expressions – Perfect Square
  • Theoretical Probability
  • Formulae for a cube
  • Probability – Favourable Elementary Events

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
cbse ncert
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions