• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
    • Wordfeud Cheat
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 are part of NCERT Solutions for Class 12 Maths. Here we have given NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11.

  • Integrals Class 12 Ex 7.1
  • Integrals Class 12 Ex 7.2
  • Integrals Class 12 Ex 7.3
  • Integrals Class 12 Ex 7.4
  • Integrals Class 12 Ex 7.5
  • Integrals Class 12 Ex 7.6
  • Integrals Class 12 Ex 7.7
  • Integrals Class 12 Ex 7.8
  • Integrals Class 12 Ex 7.9
  • Integrals Class 12 Ex 7.10
Board CBSE
Textbook NCERT
Class Class 12
Subject Maths
Chapter Chapter 7
Chapter Name Integrals
Exercise Ex 7.11
Number of Questions Solved 21
Category NCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

Ex 7.11 Class 12 Maths Question 1.
\(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { cos }^{ 2 }x\quad dx } =I\)
Solution:
\(I=\frac { 1 }{ 2 } \int _{ 0 }^{ \frac { \pi }{ 2 } }{ (1+cos2x)dx } =\frac { 1 }{ 2 } { \left[ x+\frac { sin2x }{ 2 } \right] }_{ 0 }^{ \frac { \pi }{ 2 } }\quad =\frac { \pi }{ 4 } \)

Ex 7.11 Class 12 Maths Question 2.
\(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sqrt { sinx } }{ \sqrt { sinx } +\sqrt { cosx } } dx } \)
Solution:
let I = \(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sqrt { sinx } }{ \sqrt { sinx } +\sqrt { cosx } } dx } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q2.1

Ex 7.11 Class 12 Maths Question 3.
\(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { { sin }^{ \frac { 3 }{ 2 } }xdx }{ { sin }^{ \frac { 3 }{ 2 } }x+{ cos }^{ \frac { 3 }{ 2 } }dx } dx } \)
Solution:
let I = \(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { { sin }^{ \frac { 3 }{ 2 } }xdx }{ { sin }^{ \frac { 3 }{ 2 } }x+{ cos }^{ \frac { 3 }{ 2 } }dx } dx } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q3.1

Ex 7.11 Class 12 Maths Question 4.
\(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { { cos }^{ 5 }xdx }{ { sin }^{ 5 }x+{ cos }^{ 5 }x } } \)
Solution:
let I = \(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { { cos }^{ 5 }xdx }{ { sin }^{ 5 }x+{ cos }^{ 5 }x } } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q4.1

Ex 7.11 Class 12 Maths Question 5.
\(\int _{ -5 }^{ 5 }{ \left| x+2 \right| dx=I } \)
Solution:
\(I=\int _{ -5 }^{ 5 }{ \left| x+2 \right| dx+\int _{ -2 }^{ 5 }{ \left| x+2 \right| dx } } \)
at x = – 5, x + 2 < 0; at x = – 2, x + 2 = 0; at x = 5, x + 2>0;x + 2<0, x + 2 = 0, x + 2>0
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q5.1

Ex 7.11 Class 12 Maths Question 6.
\(\int _{ 2 }^{ 8 }{ |x-5|dx } =I\)
Solution:
\(\int _{ 2 }^{ 8 }{ |x-5|dx } =I\)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q6.1

Ex 7.11 Class 12 Maths Question 7.
\(\int _{ 0 }^{ 1 }{ x(1-x)^{ n }dx } =I\)
Solution:
\(\int _{ 0 }^{ 1 }{ x(1-x)^{ n }dx } =I\)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q7.1

Ex 7.11 Class 12 Maths Question 8.
\(\int _{ 0 }^{ \frac { \pi }{ 4 } }{ log(1+tanx)dx } \)
Solution:
let I = \(\int _{ 0 }^{ \frac { \pi }{ 4 } }{ log(1+tanx)dx } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q8.1

Ex 7.11 Class 12 Maths Question 9.
\(\int _{ 0 }^{ 2 }{ x\sqrt { 2-x } dx=I } \)
Solution:
let 2-x = t
⇒ – dx = dt
when x = 0, t = 2 and when x = 2,t = 0
\(\frac { 1 }{ 2 }\)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q9.1

Ex 7.11 Class 12 Maths Question 10.
\(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \left( 2logsinx-logsin2x \right) dx=I } \)
Solution:
\(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \left( 2logsinx-logsin2x \right) dx=I } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q10.1

Ex 7.11 Class 12 Maths Question 11.
\(\int _{ \frac { -\pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ { sin }^{ 2 } } xdx\)
Solution:
Let f(x) = sin² x
f(-x) = sin² x = f(x)
∴ f(x) is an even function
\(\therefore \int _{ \frac { -\pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ { sin }^{ 2 } } xdx\quad =2\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \left[ \frac { 1-cos2x }{ 2 } \right] dx } \)
\(={ \left[ x-\frac { sin2x }{ x } \right] }_{ 0 }^{ \frac { \pi }{ 2 } }\therefore I=\frac { \pi }{ 2 } \)

Ex 7.11 Class 12 Maths Question 12.
\(\int _{ 0 }^{ \pi }{ \frac { xdx }{ 1+sinx } } \)
Solution:
let I = \(\int _{ 0 }^{ \pi }{ \frac { xdx }{ 1+sinx } } \) …(i)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q12.1

Ex 7.11 Class 12 Maths Question 13.
\(\int _{ \frac { -\pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ { sin }^{ 7 } } xdx\)
Solution:
Let f(x) = sin7 xdx
⇒ f(-x) = -sin7 x = -f(x)
⇒ f(x) is an odd function of x
⇒ \(\int _{ \frac { -\pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ { sin }^{ 7 } } xdx=0\)

Ex 7.11 Class 12 Maths Question 14.
\(\int _{ 0 }^{ 2\pi }{ { cos }^{ 5 } } xdx\)
Solution:
let f(x) = cos5 x
⇒ f(2π – x) = cos5 x
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q14.1

Ex 7.11 Class 12 Maths Question 15.
\(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { sinx-cosx }{ 1+sinx\quad cosx } dx } \)
Solution:
let I = \(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { sinx-cosx }{ 1+sinx\quad cosx } dx } \) …(i)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q15.1

Ex 7.11 Class 12 Maths Question 16.
\(\int _{ 0 }^{ \pi }{ log(1+cosx)dx } \)
Solution:
let I = \(\int _{ 0 }^{ \pi }{ log(1+cosx)dx } \)
then I = \(\int _{ 0 }^{ \pi }{ log[1+cos(\pi -x)]dx } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q16.1
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q16.2

Ex 7.11 Class 12 Maths Question 17.
\(\int _{ 0 }^{ a }{ \frac { \sqrt { x } }{ \sqrt { x } +\sqrt { a-x } } dx } \)
Solution:
let I = \(\int _{ 0 }^{ a }{ \frac { \sqrt { x } }{ \sqrt { x } +\sqrt { a-x } } dx } \) …(i)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q17.1

Ex 7.11 Class 12 Maths Question 18.
\(\int _{ 0 }^{ 4 }{ \left| x-1 \right| dx=I } \)
Solution:
\(I=-\int _{ 0 }^{ 1 }{ (x-1)dx } +\int _{ 1 }^{ 4 }{ (x-1)dx } \)
\(=-{ \left[ \frac { { x }^{ 2 } }{ 2 } -x \right] }_{ 0 }^{ 1 }+{ \left[ \frac { { x }^{ 2 } }{ 2 } -x \right] }_{ 1 }^{ 4 }=5 \)

Ex 7.11 Class 12 Maths Question 19.
show that \(4\int _{ 0 }^{ a }{ f(x)g(x)dx } =2\int _{ 0 }^{ a }{ f(x)dx } \) if f and g are defined as f(x)=f(a-x) and g(x)+g(a-x)=4
Solution:
let I = \(\int _{ 0 }^{ a }{ f(x)g(x)dx } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q19.1

Ex 7.11 Class 12 Maths Question 20.
The value of \(\int _{ \frac { -\pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ \left( { x }^{ 3 }+xcosx+{ tan }^{ 5 }x+1 \right) dx } \) is
(a) 0
(b) 2
(c) π
(d) 1
Solution:
(c) let I = \(\int _{ \frac { -\pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ \left( { x }^{ 3 }+xcosx+{ tan }^{ 5 }x+1 \right) dx } \) is
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q20.1

Ex 7.11 Class 12 Maths Question 21.
The value of \(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ log\left[ \frac { 4+3sinx }{ 4+3sinx } \right] dx } \) is
(a) 2
(b) \(\frac { 3 }{ 4 }\)
(c) 0
(d) -2
Solution:
let I = \(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ log\left[ \frac { 4+3sinx }{ 4+3sinx } \right] dx } \)
NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Q21.1

We hope the NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 help you. If you have any query regarding NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11, drop a comment below and we will get back to you at the earliest.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • Letter to The Editor Class 12 CBSE Format, Samples and Examples
  • Speech Writing Format CBSE Class 11 Examples, Samples, Topics
  • Report Writing Class 12 Format, Examples, Topics, Samples
  • Decimals
  • CBSE Class 12 English Letter Writing – Letters Of Application for Jobs
  • NCERT Exemplar Problems Class 7 Maths – Exponents and Powers
  • NCERT Exemplar Class 7 Maths Practical Geometry Symmetry and Visualising Solid Shapes
  • NCERT Exemplar Class 7 Maths Algebraic Expression
  • NCERT Solutions for Class 11 Maths Chapter 8 Binomial Theorem Ex 8.2
  • NCERT Exemplar Problems Class 7 Maths – Perimeter and Area
  • NEET Physics Chapter Wise Mock Test – General properties of matter
  • ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 6 Factorization MCQS
  • Division of a Polynomial by a Monomial
  • Multiplication-Decimal Numbers
  • Proper, Improper and Mixed fractions

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
cbse ncert
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions