• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • NCERT Solutions
    • NCERT Books Free Download
  • TS Grewal
    • TS Grewal Class 12 Accountancy Solutions
    • TS Grewal Class 11 Accountancy Solutions
  • CBSE Sample Papers
  • NCERT Exemplar Problems
  • English Grammar
  • MCQ Questions

CBSE Tuts

CBSE Maths notes, CBSE physics notes, CBSE chemistry notes

GSEB Solutions for Class 8 Mathematics – Quadrilateral

GSEB Solutions for Class 8 Mathematics – Quadrilateral (English Medium)

GSEB SolutionsMathsScience
Exercise

Solution 1:
gseb-solutions-for-class-8-mathematics-quadrilateral-1
DEGF can be named in eight different ways as follows:
DEGF, EGFD, GFDE, FDEG, DFGE, FGED, GEDF, EDFG.

Solution 2:
gseb-solutions-for-class-8-mathematics-quadrilateral-2

Solution 3:
In STUV, m∠S = 90°, m∠V = 80° and
let m∠T = m∠U = x
Now, in STUV,
m∠S + m∠T + m∠U + m∠V = 360°
∴ 90° + x + x + 80° = 360°
∴ 2x + 170° = 360°
∴ 2x = 360° – 170°
∴ 2x = 190°
∴ x = 190°/2
∴ x = 95°
∴ m∠T = m∠U = 95°
Thus, in STUV, m∠T = 95° and m∠U = 95°.

Solution 4:
In PQRS, let m∠P = x.
Then, we have
m∠Q = x – 10°
m∠R = x – 20°
m∠S = x – 30°
In PQRS,
m∠P + m∠Q + m∠R + m∠S = 360°
∴ x + (x – 10°) + (x – 20°) + (x – 30°) = 360°
∴ x + x – 10° + x – 20° + x – 30° = 360°
∴ 4x – 60° = 360°
∴ 4x = 360° + 60°
∴ 4x = 420°
∴ x = 420°/4
∴ x = 105°
Then, m∠P = x = 105°
m∠Q = x – 10° = 105° – 10° = 95°
m∠R = x – 20° = 105° – 20° = 85°
and m∠S = x – 30° = 105° – 30° = 75°
Thus, in PQRS, the measures of four angles are:
m∠P = 105°, m∠Q = 95°, m∠R = 85° and m∠S = 75°.

Solution 5:
The sum of measures of all the angles of a quadrilateral is 360°.
The measure of one of the angles is 120°.
∴ The sum of the measures of the remaining three angles
= 360° – 120° = 240°
Now, the measures of the remaining three angles are equal.
∴ The measure of each of the remaining angles
= 240°/3  = 80°
Thus, the measure of each of the remaining three angles is 80°.

Solution 6:

  1. Number of sides of a quadrilateral = 4
    Number of angles of a quadrilateral = 4
    Number of diagonals of a quadrilateral = 2
  2. The sum of the measures of four angles of a quadrilateral is 360°.
  3. In a square, all the four angles are right angles, i.e. each angle measures 90°.
    ∴The sum of the measures of the three angles of a square
    = 90° + 90° + 90°
    = 270°
  4.  A square and a rhombus have equal measures of all the four sides.

Practice 1

Solution 1:
gseb-solutions-for-class-8-mathematics-quadrilateral-3

Solution 2:
□PQRS, □QRSP, □RSPQ, □SPQR, □PSRQ, □SRQP, □RQPS, □QPSR
gseb-solutions-for-class-8-mathematics-quadrilateral-4

□XYZW, □YZWX, □ZWXY, □WXYZ, □XWZY, □WZYX, □ZYXW, □YXWZ
gseb-solutions-for-class-8-mathematics-quadrilateral-5

□LMNO, □MNOL, □NOLM, □OLMN, □LONM, □ONML, □NMLO, □MLON
gseb-solutions-for-class-8-mathematics-quadrilateral-6

Solution 3:
A quadrilateral with vertices S, T, U and V can be given a name using two methods; clockwise and anticlockwise.
gseb-solutions-for-class-8-mathematics-quadrilateral-7
Clockwise direction: □SVUT, □VUTS, □UTSV, □TSVU
Anti-clockwise direction: □STUUV, □TUVS, □UVST, □VSTU

Practice 2

Solution 1:
gseb-solutions-for-class-8-mathematics-quadrilateral-8

Practice 3

Solution 1:
The sum of the measures of the three angles of a quadrilateral
= 75° + 65° + 120°
= 260°
The sum of the measures of all four angles of a quadrilateral is 360°.
∴ Measure of the fourth angle = 360° – 260° = 100°
Thus, the measure of the fourth angle of the quadrilateral is 100°.

Solution 2:
The sum of measures of two angles of a quadrilateral = 80° + 100° = 180°.
The sum of the measures of all four angles of a quadrilateral is 360°.
∴ The sum of the measures of other two angles = 360° – 180° = 180°
Since the measures of these two angles are equal, measure of each angle = 180° ÷ 2 = 90°
Thus, the measure of each of the angles having equal measures is 90°.

Solution 3:
In □MNOP, let m∠M = x.
∴ m∠N = x + 10°
m∠O = x + 20°
m∠P = x + 30°.
For □MNOP,
m∠M + m∠N + m∠O + m∠P = 360°
∴ x + x + 10° + x + 20° + x + 30° = 360°
∴ 4x + 60° = 360°
∴ 4x = 360° – 60°
∴ 4x = 300°
∴ x = 300°/4
∴ x = 75°
Now, m∠M = x = 75°,
m∠n = x + 10° = 75° + 10° = 85°,
m∠O = x + 20° = 75° + 20° = 95°
m∠P = x + 30° = 75° + 30° = 105°
Thus, the measures of the angles of □MNOP are
m∠M = 75°, m∠N = 85°, m∠O = 95° and m∠P = 105°.

Solution 4:
In □DEFG, m∠D = 120°, m∠F = 140°
Let m∠E = m∠G = x (say).
In □DEFG,
m∠D + m∠E + m∠F + m∠G = 360°
∴ 120° + x + 140° + x = 360°
∴ 2x + 260° = 360°
∴ 2x = 360° – 260°
∴ 2x = 100°
∴ x = 100°/2
∴ x = 50°
∴ m∠E = m∠G = 50°.
Thus, in □DEFG, m∠E = 50° and m∠G = 50°.

Solution 5:
Sum of measures of all the four angles of a quadrilateral is 360°.
Here, the measures of all four angles are equal.
∴ Measure of each angle of a quadrilateral
= 360°/4
= 90°
Thus, the measure of each angle of the quadrilateral is 90°.

Solution 6:
Sum of the measures of all the angles of a quadrilateral is 360°.
One angle of a quadrilateral is a right angle.
∴ The measure of this angle is 90°.
The measure of one other angle of a quadrilateral is 110°.
So, the sum of measures of the two given angles of the quadrilateral = 90° + 110° = 200°.
∴ The sum of measures of the remaining two angles of the quadrilateral = 360° – 200° = 160°.
The measures of these two remaining angles are equal.
∴ Measure of each of the remaining two angles
= 160°/2
=  80°
Thus, the measure of each of the angles with equal measures is 80°.

Primary Sidebar

NCERT Exemplar problems With Solutions CBSE Previous Year Questions with Solutoins CBSE Sample Papers

Recent Posts

  • MCQ Questions with Answers for Class 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, and 1 all Subjects
  • Angle, Types of Angles
  • AND gate is formed by using two? 1)OR 2)NAND 3)NOT 4)NOR
  • And expression for one minus the quotient of one and a number X?
  • What is average human body temperature in Kelvins?
  • How many moles of caffeine are in a cup, and how many molecules of caffeine?
  • How far will the car have traveled in that time?
  • What is its atomic number?
  • How many neutrons does it have?
  • An atom loses electrons to form what?
  • What is the atomic number of this atom?
  • Which one of these is the answer?
  • What is its concentration?
  • Can an equilateral triangle also be isosceles?
  • What is the charge of an alpha particle?

Footer

Maths NCERT Solutions

NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 11 Maths
NCERT Solutions for Class 10 Maths
NCERT Solutions for Class 9 Maths
NCERT Solutions for Class 8 Maths
NCERT Solutions for Class 7 Maths
NCERT Solutions for Class 6 Maths

SCIENCE NCERT SOLUTIONS

NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 11 Physics
NCERT Solutions for Class 11 Chemistry
NCERT Solutions for Class 10 Science
NCERT Solutions for Class 9 Science
NCERT Solutions for Class 7 Science
MCQ Questions NCERT Solutions
CBSE Sample Papers
cbse ncert
NCERT Exemplar Solutions LCM and GCF Calculator
TS Grewal Accountancy Class 12 Solutions
TS Grewal Accountancy Class 11 Solutions